HP Switch Software
Basic Operation Guide

<table>
<thead>
<tr>
<th>HP 3500</th>
<th>HP 3800</th>
<th>HP 2520</th>
</tr>
</thead>
<tbody>
<tr>
<td>HP 3500yl</td>
<td>HP 2620</td>
<td>HP 2520G</td>
</tr>
<tr>
<td>HP 5400zl</td>
<td>HP 2615</td>
<td>HP 2530</td>
</tr>
<tr>
<td>HP 6200yl</td>
<td>HP 2910</td>
<td></td>
</tr>
<tr>
<td>HP 6600</td>
<td>HP 2915</td>
<td></td>
</tr>
<tr>
<td>HP 8200zl</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

November 2012
HP Networking

HP 3500 HP 3800 HP 2520
HP 3500yl HP 2620 HP 2520G
HP 5400zl HP 2615 HP 2530
HP 6200yl HP 2910al
HP 6600 HP 2915
HP 8200zl

November 2012

Basic Operation Guide
© Copyright 2005–2012 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice. All Rights Reserved.

This document contains proprietary information, which is protected by copyright. No part of this document may be photocopied, reproduced, or translated into another language without the prior written consent of Hewlett-Packard.

Publication Number
5008-3892
November 2012

Applicable Products
HP 3500 Switches (J9470A, J9471A, J9472A, J9473A)
HP 3500yl Switches (J8692A, J8693A)
HP 5400zl Switches (J8697A, J8698A, J9447A, J9448A)
HP 6200yl Switch (J8692A)
HP 8200zl Switches (J9475A, J8715A/B)
HP 5400zl Switches (J9263A, J9264A, J9265A, J9451A, J9452A)
HP 2620 Switches (J9292A, J9294A, J9295A, J9296A, J9297A, J9298A, J9299A)
HP 2720 Switches (J9137A, J9138A)
Switch 2530-48G-PoE+ (J9772A)
HP Switch 2530-24G-PoE+ (J9773A)
HP Switch 2530-48G (J9775A)
HP Switch 2530-24G (J9776A)
HP 2615 Switch (J9565A)
HP 2910al Switches (J9145A, J9146A, J9147A, J9148A)
HP 2915 Switch (J9562A)

Trademark Credits
Microsoft, Windows, and Microsoft Windows NT are US registered trademarks of Microsoft Corporation. Java™ is a US trademark of Sun Microsystems, Inc.

Disclaimer
The information contained in this document is subject to change without notice.

HEWLETT-PACKARD COMPANY MAKES NO WARRANTY OF ANY KIND WITH REGARD TO THIS MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. Hewlett-Packard shall not be liable for errors contained herein or for incidental or consequential damages in connection with the furnishing, performance, or use of this material.

The only warranties for HP products and services are set forth in the express warranty statements accompanying such products and services. Nothing herein should be construed as constituting an additional warranty. HP shall not be liable for technical or editorial errors or omissions contained herein.

Hewlett-Packard assumes no responsibility for the use or reliability of its software on equipment that is not furnished by Hewlett-Packard.

Software End User License Agreement and Hardware Limited Warranty
For the software end user license agreement and the hardware limited warranty information for HP Networking products, visit www.hp.com/networking/support.

Hewlett-Packard Company
8000 Foothills Boulevard, m/s 5551
Roseville, California 95747-5551
http://www.hp.com/networking/support
Contents

Product Documentation

<table>
<thead>
<tr>
<th>Manual Set</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>About Your Switch</td>
<td>vii</td>
</tr>
<tr>
<td>Electronic Publications</td>
<td>vii</td>
</tr>
<tr>
<td>List of Commands</td>
<td>viii</td>
</tr>
</tbody>
</table>

1 Getting Started

<table>
<thead>
<tr>
<th>Feature</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initial Switch Set-Up</td>
<td>1-1</td>
</tr>
<tr>
<td>Recommended Minimal Configuration</td>
<td>1-1</td>
</tr>
<tr>
<td>Using the Switch Setup Screen</td>
<td>1-2</td>
</tr>
<tr>
<td>Login Banners</td>
<td>1-4</td>
</tr>
<tr>
<td>Custom Login Banners</td>
<td>1-4</td>
</tr>
<tr>
<td>Banner Operation with Telnet, Serial, or SSHv2 Access</td>
<td>1-4</td>
</tr>
<tr>
<td>Banner Operation with the WebAgent</td>
<td>1-4</td>
</tr>
<tr>
<td>Configuring and Displaying a Non-Default Banner</td>
<td>1-5</td>
</tr>
<tr>
<td>Example of Configuring and Displaying a Banner</td>
<td>1-6</td>
</tr>
<tr>
<td>Operating Notes</td>
<td>1-8</td>
</tr>
<tr>
<td>User-Configurable Banner Message after</td>
<td>1-9</td>
</tr>
<tr>
<td>Authentication</td>
<td>1-9</td>
</tr>
<tr>
<td>Banner MOTD Command with</td>
<td></td>
</tr>
<tr>
<td>Non-Interactive Mode</td>
<td>1-10</td>
</tr>
</tbody>
</table>

2 Using the Menu Interface

<table>
<thead>
<tr>
<th>Feature</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overview</td>
<td>2-1</td>
</tr>
<tr>
<td>Starting and Ending a Menu Session</td>
<td>2-2</td>
</tr>
<tr>
<td>How To Start a Menu Interface Session</td>
<td>2-3</td>
</tr>
<tr>
<td>How To End a Menu Session and Exit from the Console</td>
<td>2-4</td>
</tr>
<tr>
<td>Main Menu Features</td>
<td>2-6</td>
</tr>
<tr>
<td>Screen Structure and Navigation</td>
<td>2-8</td>
</tr>
<tr>
<td>Rebooting the Switch</td>
<td>2-11</td>
</tr>
</tbody>
</table>
Menu Features List ... 2-13

Port-Level Configuration on HP 3800
Switches with Stacking Enabled 2-13

Where To Go From Here ... 2-14

3 Using the Command Line Interface (CLI)

Overview .. 3-1
Accessing the CLI ... 3-1
Using the CLI .. 3-1
 Privilege Levels at Logon 3-2
 Privilege Level Operation 3-3
 Operator Privileges 3-3
 Manager Privileges 3-4
 How To Move Between Levels 3-6
 Listing Commands and Command Options 3-7
 Listing Commands Available at Any Privilege Level 3-7
 Listing Command Options 3-9
 Displaying CLI “Help” 3-10
 Configuration Commands and the Context Configuration Modes . 3-12

Return Message Types with CLI Commands 3-16

CLI Interactive Commands 3-17
 Interactive Commands Requiring Additional Options 3-18
 Menu Commands .. 3-19
 SNMPv3 Special Cases 3-19
 Banner MOTD Command with Non-Interactive Mode .. 3-19

CLI Control and Editing 3-22
 Executing a Prior Command—Redo 3-22
 Repeating Execution of a Command 3-23
 Using a Command Alias 3-24
 CLI Shortcut Keystrokes 3-27

Port-Level Configuration on HP 3800
Switches with Stacking Enabled 3-28
4 Using the HP WebAgent

Overview .. 4-1
General Features .. 4-2
Starting the WebAgent 4-4
 Using a Standalone Web Browser from a PC or UNIX Workstation . 4-4

Tasks for Your First WebAgent Session 4-5
 Viewing the “First Time Install” Window 4-5
 Setting a Username and Password 4-5
 If You Lose the Password 4-6
 Online Help for the WebAgent 4-7
 Downloading the WebAgent Help to a Local Server 4-7

Connecting to the WebAgent from HP PCM+ 4-7

5 Switch Memory and Configuration

Overview .. 5-1
Configuration File Management 5-1
Using the CLI To Implement Configuration Changes 5-4
Creating a Custom Default Configuration 5-8
 Copying an Existing Configuration File to the Custom Default
 Configuration File 5-9
 Copying the Custom Default Config File onto the Switch 5-10
 Using TFTP ... 5-10
 Using XMODEM 5-10
 Using USB .. 5-11
 Copying the Custom Default Config File Off the Switch 5-11
 Using TFTP ... 5-11
 Using XMODEM 5-11
 Using USB .. 5-11
 Using SFTP and SCP to Transfer the Custom Configuration 5-12
Erasing a Configuration File 5-13
Displaying the Configuration Files 5-14
Troubleshooting Custom Default Configuration Files 5-16
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Using the Menu and WebAgent To Implement Configuration Changes</td>
<td>5-16</td>
</tr>
<tr>
<td>Menu: Implementing Configuration Changes</td>
<td>5-17</td>
</tr>
<tr>
<td>Using Save and Cancel in the Menu Interface</td>
<td>5-17</td>
</tr>
<tr>
<td>Rebooting from the Menu Interface</td>
<td>5-18</td>
</tr>
<tr>
<td>WebAgent: Implementing Configuration Changes</td>
<td>5-19</td>
</tr>
<tr>
<td>Using Primary and Secondary Flash Image Options</td>
<td>5-20</td>
</tr>
<tr>
<td>Displaying the Current Flash Image Data</td>
<td>5-20</td>
</tr>
<tr>
<td>Switch Software Downloads</td>
<td>5-22</td>
</tr>
<tr>
<td>Local Switch Software Replacement and Removal</td>
<td>5-23</td>
</tr>
<tr>
<td>Zeroizing the File Storage of the Management Module</td>
<td>5-25</td>
</tr>
<tr>
<td>Zeroizing from the ROM Console</td>
<td>5-26</td>
</tr>
<tr>
<td>Zeroizing with HA</td>
<td>5-27</td>
</tr>
<tr>
<td>Rebooting the Switch</td>
<td>5-27</td>
</tr>
<tr>
<td>Operating Notes about Booting</td>
<td>5-27</td>
</tr>
<tr>
<td>Boot and Reload Command Comparison</td>
<td>5-28</td>
</tr>
<tr>
<td>Setting the Default Flash</td>
<td>5-29</td>
</tr>
<tr>
<td>Booting from the Default Flash (Primary or Secondary)</td>
<td>5-30</td>
</tr>
<tr>
<td>Booting from a Specified Flash</td>
<td>5-31</td>
</tr>
<tr>
<td>Using Reload</td>
<td>5-32</td>
</tr>
<tr>
<td>Multiple Configuration Files</td>
<td>5-36</td>
</tr>
<tr>
<td>General Operation</td>
<td>5-37</td>
</tr>
<tr>
<td>Transitioning to Multiple Configuration Files</td>
<td>5-39</td>
</tr>
<tr>
<td>Listing and Displaying Startup-Config Files</td>
<td>5-40</td>
</tr>
<tr>
<td>Viewing the Startup-Config File Status with Multiple Configuration Enabled</td>
<td>5-40</td>
</tr>
<tr>
<td>Displaying the Content of A Specific Startup-Config File</td>
<td>5-41</td>
</tr>
<tr>
<td>Changing or Overriding the Reboot Configuration Policy</td>
<td>5-41</td>
</tr>
<tr>
<td>Managing Startup-Config Files in the Switch</td>
<td>5-43</td>
</tr>
<tr>
<td>Renaming an Existing Startup-Config File</td>
<td>5-44</td>
</tr>
<tr>
<td>Creating a New Startup-Config File</td>
<td>5-44</td>
</tr>
<tr>
<td>Erasing a Startup-Config File</td>
<td>5-45</td>
</tr>
<tr>
<td>Using the Clear + Reset Button Combination To Reset the Switch to Its Default Configuration</td>
<td>5-47</td>
</tr>
<tr>
<td>Transferring Startup-Config Files To or From a Remote Server</td>
<td>5-48</td>
</tr>
<tr>
<td>TFTP: Copying a Configuration File to a Remote Host</td>
<td>5-48</td>
</tr>
<tr>
<td>Section</td>
<td>Page</td>
</tr>
<tr>
<td>--</td>
<td>-------</td>
</tr>
<tr>
<td>TFTP: Copying a Configuration File from a Remote Host</td>
<td>5-49</td>
</tr>
<tr>
<td>Xmodem: Copying a Configuration File to a Serially Connected Host</td>
<td>5-50</td>
</tr>
<tr>
<td>Xmodem: Copying a Configuration from a Serially Connected Host</td>
<td>5-50</td>
</tr>
<tr>
<td>Operating Notes for Multiple Configuration Files</td>
<td>5-50</td>
</tr>
<tr>
<td>Display Configuration of Selected Interface</td>
<td>5-51</td>
</tr>
<tr>
<td>Running Configuration Output</td>
<td>5-51</td>
</tr>
<tr>
<td>Startup Configuration Output</td>
<td>5-58</td>
</tr>
<tr>
<td>Automatic Configuration Update with DHCP Option 66</td>
<td>5-61</td>
</tr>
<tr>
<td>CLI Command</td>
<td>5-61</td>
</tr>
<tr>
<td>Possible Scenarios for Updating the Configuration File</td>
<td>5-62</td>
</tr>
<tr>
<td>Operating Notes</td>
<td>5-62</td>
</tr>
<tr>
<td>Log Messages</td>
<td>5-63</td>
</tr>
</tbody>
</table>

6 Interface Access and System Information

Interface Access: Console/Serial Link, Web, and Inbound Telnet 6-1
- Modifying the Interface Access 6-2
 - About Terminal Line Width and Length Settings 6-2
 - Listing the Current Console/Serial Link Configuration 6-2
 - Reconfigure Inbound Telnet Access 6-4
 - Outbound Telnet to Another Device 6-5
 - Making Window Size Negotiation Available for a Telnet Session 6-6
 - Reconfigure WebAgent Access 6-7
 - Reconfigure the Console/Serial Link Settings 6-7

Denying Interface Access by Terminating Remote Management Sessions 6-9

System Information 6-11
- Viewing and Configuring System Information 6-12

7 Configuring IP Addressing

Overview 7-1

IP Configuration 7-1
 - Just Want a Quick Start with IP Addressing? 7-3
IP Addressing with Multiple VLANs 7-3
Menu: Configuring IP Address, Gateway, and Time-To-Live (TTL) . . 7-4
CLI: Configuring IP Address, Gateway, and Time-To-Live (TTL) . . 7-6
WebAgent: Configuring IP Addressing 7-11
How IP Addressing Affects Switch Operation 7-12
DHCP/Bootp Operation 7-12
Network Preparations for Configuring DHCP/Bootp 7-15
Loopback Interfaces 7-16
Introduction ... 7-16
Configuring a Loopback Interface 7-17
Displaying Loopback Interface Configurations 7-18
IP Preserver: Retaining VLAN-1 IP Addressing Across Configuration File Downloads 7-21
Operating Rules for IP Preserver 7-21
Enabling IP Preserver 7-21
Configuring a Single Source IP Address 7-25
Overview .. 7-25
Specifying the Source IP Address 7-26
The Source IP Selection Policy 7-26
Displaying the Source IP Interface Information 7-29
Error Messages ... 7-33

8 Software Management

Downloading Switch Documentation and Software from the Web 8-1
Viewing or Downloading the Software Manual Set 8-1
Downloading Software Updates for Your Switch 8-1
TFTP Download from a Server 8-2
Xmodem Download From a PC or Unix Workstation 8-3
Using USB to Download Switch Software 8-4
Software Signing and Verification 8-5
Using the CLI to Validate or Bypass a Signature Verification ... 8-6
Saving Configurations While Using the CLI 8-7
Important: Best Practices for Software Updates 8-7
Updating the Switch: Overview 8-8
Index
Product Documentation

About Your Switch Manual Set

Note

For the latest version of all HP switch documentation, including Release Notes covering recently added features, please visit the HP Networking web site at www.hp.com/Networking/support.

Electronic Publications

The latest version of each of the publications listed below is available in PDF format on the HP Networking web site, as described in the Note at the top of this page.

- **Installation and Getting Started Guide**—Explains how to prepare for and perform the physical installation and connect the switch to your network.
- **Basic Operation Guide**—Describes how to use the switch interfaces and introduces basic operations.
- **Management and Configuration Guide**—Describes how to configure, manage, and monitor basic switch operation.
- **Advanced Traffic Management Guide**—Explains how to configure traffic management features such as VLANs, MSTP, QoS, and Meshing.
- **Multicast and Routing Guide**—Explains how to configure IGMP, PIM, IP routing, and VRRP features.
- **Access Security Guide**—Explains how to configure access security features and user authentication on the switch.
- **IPv6 Configuration Guide**—Describes the IPv6 protocol operations that are supported on the switch.
- **Command Line Interface Reference Guide**—Provides a comprehensive description of CLI commands, syntax, and operations.
- **Comware CLI Commands in ProVision Software**—Provides the syntax, descriptions, and examples of Comware CLI commands that can be executed in ProVision software. Includes related ProVision software commands.
- **Event Log Message Reference Guide**—Provides a comprehensive description of event log messages.
- **Release Notes**—Describe new features, fixes, and enhancements that become available between revisions of the main product guide.
List of Commands

The following table lists the commands found in the Basic Operation Guide. A few commands are not supported on certain switches.

<table>
<thead>
<tr>
<th>Command</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>alias</td>
<td>3-24</td>
</tr>
<tr>
<td>banner exec</td>
<td>1-9</td>
</tr>
<tr>
<td>banner motd</td>
<td>1-5</td>
</tr>
<tr>
<td>boot [system flash]</td>
<td>8-11</td>
</tr>
<tr>
<td>boot set-default flash</td>
<td>5-30</td>
</tr>
<tr>
<td>config</td>
<td>5-4</td>
</tr>
<tr>
<td>console</td>
<td>6-7</td>
</tr>
<tr>
<td>copy config</td>
<td>5-48</td>
</tr>
<tr>
<td>copy flash</td>
<td>5-24</td>
</tr>
<tr>
<td>copy tftp config</td>
<td>5-49</td>
</tr>
<tr>
<td>copy tftp flash</td>
<td>8-2</td>
</tr>
<tr>
<td>copy usb flash</td>
<td>8-4</td>
</tr>
<tr>
<td>copy xmodem flash</td>
<td>8-3</td>
</tr>
<tr>
<td>dhcp config-file-update</td>
<td>5-61</td>
</tr>
<tr>
<td>enable</td>
<td>3-4</td>
</tr>
<tr>
<td>end</td>
<td>3-8</td>
</tr>
<tr>
<td>erase</td>
<td>5-46</td>
</tr>
<tr>
<td>erase flash</td>
<td>5-24</td>
</tr>
<tr>
<td>exit</td>
<td>3-5</td>
</tr>
<tr>
<td>fastboot</td>
<td>5-32</td>
</tr>
<tr>
<td>hostname</td>
<td>6-13</td>
</tr>
<tr>
<td>interface loopback <number></td>
<td>7-17</td>
</tr>
<tr>
<td>ip address <ip-addr> <mask-bits></td>
<td>7-7</td>
</tr>
<tr>
<td>ip address <ip-addr>/<mask-length></td>
<td>7-7</td>
</tr>
<tr>
<td>ip address dhcp-bootp</td>
<td>7-8</td>
</tr>
<tr>
<td>ip default-gateway <ip-addr></td>
<td>7-10</td>
</tr>
<tr>
<td>ip preserve</td>
<td>7-21</td>
</tr>
<tr>
<td>ip source-interface</td>
<td>7-26</td>
</tr>
<tr>
<td>ip ttl</td>
<td>7-11</td>
</tr>
<tr>
<td>Command</td>
<td>Page</td>
</tr>
<tr>
<td>-------------------------------</td>
<td>-------</td>
</tr>
<tr>
<td>kill</td>
<td>6-9</td>
</tr>
<tr>
<td>mac-age-time</td>
<td>6-14</td>
</tr>
<tr>
<td>menu</td>
<td>2-3</td>
</tr>
<tr>
<td>redo</td>
<td>3-22</td>
</tr>
<tr>
<td>reload after</td>
<td>5-33</td>
</tr>
<tr>
<td>reload at</td>
<td>5-33</td>
</tr>
<tr>
<td>rename config</td>
<td>5-44</td>
</tr>
<tr>
<td>repeat</td>
<td>3-23</td>
</tr>
<tr>
<td>session interactive-mode</td>
<td>3-17</td>
</tr>
<tr>
<td>session show-message-type</td>
<td>3-16</td>
</tr>
<tr>
<td>show <ip</td>
<td>ipv6></td>
</tr>
<tr>
<td>show banner</td>
<td>3-20</td>
</tr>
<tr>
<td>show config</td>
<td>5-58</td>
</tr>
<tr>
<td>show config files</td>
<td>5-40</td>
</tr>
<tr>
<td>show config interface</td>
<td>5-58</td>
</tr>
<tr>
<td>show config status</td>
<td>5-4</td>
</tr>
<tr>
<td>show console</td>
<td>6-2</td>
</tr>
<tr>
<td>show flash</td>
<td>8-13</td>
</tr>
<tr>
<td>show ip route</td>
<td>7-20</td>
</tr>
<tr>
<td>show ip source-interface</td>
<td>7-30</td>
</tr>
<tr>
<td>show reload</td>
<td>5-35</td>
</tr>
<tr>
<td>show running-config</td>
<td>5-51</td>
</tr>
<tr>
<td>show running-config interface</td>
<td>5-51</td>
</tr>
<tr>
<td>show session</td>
<td>3-18</td>
</tr>
<tr>
<td>show system information</td>
<td>6-12</td>
</tr>
<tr>
<td>show version</td>
<td>5-20</td>
</tr>
<tr>
<td>snmp -server <contact</td>
<td>location></td>
</tr>
<tr>
<td>startup-default</td>
<td>5-42</td>
</tr>
<tr>
<td>telnet</td>
<td>6-5</td>
</tr>
<tr>
<td>telnet-server</td>
<td>6-4</td>
</tr>
<tr>
<td>time</td>
<td>6-14</td>
</tr>
<tr>
<td>time daylight-time-rule</td>
<td>6-14</td>
</tr>
<tr>
<td>time timezone</td>
<td>6-14</td>
</tr>
<tr>
<td>vlan</td>
<td>3-4</td>
</tr>
<tr>
<td>Command</td>
<td>Page</td>
</tr>
<tr>
<td>---------------------</td>
<td>------</td>
</tr>
<tr>
<td>web-management</td>
<td>6-7</td>
</tr>
<tr>
<td>write memory</td>
<td>5-5</td>
</tr>
<tr>
<td>write terminal</td>
<td>5-4</td>
</tr>
</tbody>
</table>
Getting Started

Initial Switch Set-Up

Initial setup includes:
- setting a Manager password
- assigning an IP (Internet Protocol) address and subnet mask
- configuring optional banners

Recommended Minimal Configuration

In the factory default configuration, the switch has no IP (Internet Protocol) address and subnet mask, and no passwords. In this state, it can be managed only through a direct console connection. To manage the switch through in-band (networked) access, you should configure the switch with an IP address and subnet mask compatible with your network. Also, you should configure a Manager password to control access privileges from the console and web browser interface. Other parameters in the Switch Setup screen can be left at their default settings or you can configure them with values you enter.

For more information on IP addressing, see “Configuring IP Addressing” on page 7-1.

Note

By default, the switch is configured to acquire an IPv4 address configuration from a DHCP or Bootp server. To use DHCP/Bootp instead of the manual method described in this chapter, see DHCP/Bootp Operation in the Management and Configuration Guide for your switch.

For information on configuring IPv6 addressing, refer to the latest IPv6 Configuration Guide for your switch.
Using the Switch Setup Screen

The quickest and easiest way to minimally configure the switch for management and password protection is to use a direct console connection to the switch, start a console session, and access the Switch Setup screen.

1. Using the method described in the Installation and Getting Started Guide for your switch, connect a terminal device to the switch and display the switch console command (CLI) prompt (the default display).

 The CLI prompt appears displaying the switch model number, for example:

 HP E8200zl#

2. screen. The following illustration is an example of a Setup screen with default settings. Your screen may vary slightly.

Figure 1-1. Example Switch Setup Screen

3. Use the Tab key to select the Manager Password field and enter a manager password of up to 16 characters.
4. Tab to the **IP Config (DHCP/Bootp)** field and use the Space bar to select the **Manual** option.

5. Tab to the **IP Address** field and enter the IP address that is compatible with your network.

6. Tab to the **Subnet Mask** field and enter the subnet mask used for your network.

7. Press Enter, then **S** (for **Save**).

Table 1-1. Setup Screen Field Descriptions

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Default</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>System Name</td>
<td>blank</td>
<td>Optional; up to 255 characters, including spaces</td>
</tr>
<tr>
<td>System Contact</td>
<td>blank</td>
<td>Optional; up to 255 characters, including spaces</td>
</tr>
<tr>
<td>Manager Password</td>
<td>blank</td>
<td>Recommended; up to 16 characters (no blank spaces)</td>
</tr>
<tr>
<td>Logon Default</td>
<td>CLI</td>
<td>The default setting selects the command line interface for console access. The alternative is the Menu interface.</td>
</tr>
<tr>
<td>Time Zone</td>
<td>0 (none)</td>
<td>Optional; 1440 to -1440. The number of minutes your location is to the West (-) or East (+) of GMT.</td>
</tr>
<tr>
<td>Community Name</td>
<td>public</td>
<td>Default setting recommended.</td>
</tr>
<tr>
<td>Spanning Tree Enabled</td>
<td>No</td>
<td>Default setting recommended unless STP is already running on your network or the switch will be used in complex network topologies.</td>
</tr>
<tr>
<td>Default Gateway</td>
<td>blank</td>
<td>Recommended; Enter the IP address of the next-hop gateway node if network traffic needs to be able to reach off-subnet destinations.</td>
</tr>
<tr>
<td>Time Sync Method</td>
<td>TimeP</td>
<td>Optional; The protocol the switch uses to acquire a time signal. The options are SNTP and TimeP.</td>
</tr>
<tr>
<td>TimeP Mode</td>
<td>Disabled</td>
<td>Synchronizes the time kept on the switch to the TimeP server.</td>
</tr>
<tr>
<td>IP Config</td>
<td>DHCP/Bootp</td>
<td>Set to Manual unless a DHCP/Bootp server is used on your network to configure IP addressing.</td>
</tr>
<tr>
<td>IP Address</td>
<td>xxx.xxx.xxx.xxx</td>
<td>Recommended; If you set IP Config to Manual, then enter an IP address compatible with your network.*</td>
</tr>
<tr>
<td>Subnet Mask</td>
<td>xxx.xxx.xxx.xxx</td>
<td>Recommended; If you entered an IP address, then enter a subnet mask compatible with your network.*</td>
</tr>
</tbody>
</table>

*The IP address and subnet mask assigned for the switch must be compatible with the IP addressing used in your network.
For more on IPv4 addressing, see “Configuring IP Addressing” on page 7-1. For IPv6 addressing topics, refer to the latest IPv6 Configuration Guide for your switch.
Login Banners

Custom Login Banners

You can now configure the switch to display a login banner of up to 3070 characters when an operator initiates a management session with the switch through any of the following methods:

- Telnet
- Serial connection
- SSHv2
- WebAgent

The default banner displays product registration information; the copyright splash is no longer displayed.

If a banner is configured, the banner page is displayed when you access the WebAgent. The default product registration information is not displayed as there is already a product registration prompt displayed in the WebAgent.

Banner Operation with Telnet, Serial, or SSHv2 Access

When a system operator begins a login session, the switch displays the banner above the prompts for local password and Press any key to continue. Entering a correct password or, if no password is configured, pressing any key clears the banner from the CLI and displays the CLI prompt. (Refer to Figure 2-5 on page 1-6.)

Banner Operation with the WebAgent

When a system operator uses the WebAgent to access the switch, the text of a non-default banner configured on the switch appears in a dedicated banner window with a Continue link to the next page. Clicking on Continue then displays either the Registration page or the switch's home page. If the banner feature is disabled or if the switch is using the factory-default banner, then the banner page does not appear in the WebAgent screen when an operator initiates a login session with the switch.
Getting Started

Login Banners

Configuring and Displaying a Non-Default Banner

You can enable or disable banner operation using either the switch’s CLI or an SNMP application. The steps include:

1. Enable non-default banner operation and define the endpoint delimiter for the banner.
2. Enter the desired banner text, including any specific line breaks you want.
3. Enter the endpoint delimiter.

Use show banner motd to display the current banner status.

Syntax:

```
banner motd <delimiter>
no banner motd
```

This command defines the single character used to terminate the banner text and enables banner text input. You can use any character except a blank space as a delimiter. The **no** form of the command disables the login banner feature.

```
<banner-text-string>
```

The switch allows up to 3070 banner characters, including blank spaces and CR-LF ([Enter]). The tilde (~) and the delimiter defined by `banner motd <delimiter>` are not allowed as part of the banner text. While entering banner text, you can backspace to edit the current line (that is, a line that has not been terminated by a CR-LF.) However, terminating a line in a banner by entering a CR-LF prevents any further editing of that line. To edit a line in a banner entry after terminating the line with a CR-LF requires entering the delimiter described above and then re-configuring new banner text.

The banner text string must terminate with the character defined by `banner motd <delimiter>`.

Note: In redundant management, the banner is not seen on the standby module, only the active module.
Example of Configuring and Displaying a Banner

Suppose a system operator wanted to configure the following banner message on her company's switches:

This is a private system maintained by the Allied Widget Corporation.
Unauthorized use of this system can result in civil and criminal penalties!

In this case, the operator will use the [Enter] key to create line breaks, blank spaces for line centering, and the % symbol to terminate the banner message.

```
HP Switch(config)# banner motd %
Enter TEXT message. End with the character '%'
This is a private system maintained by the Allied Widget Corporation.
Unauthorized use of this system can result in civil and criminal penalties!
HP Switch(config)# write memory
```

Figure 1-2. Example of Configuring a Login Banner

To view the current banner configuration, use either the show banner motd or show running command.

```
HP Switch(config)# show banner motd
Banner Information
Banner status: Enabled
Configured Banner:
This is a private system maintained by the Allied Widget Corporation.
Unauthorized use of this system can result in civil and criminal penalties!
```

Figure 1-3. Example of show banner motd Output
Getting Started
Login Banners

Figure 1-4. The Current Banner Appears in the Switch’s Running-Config File

The next time someone logs onto the switch’s management CLI, the following appears:

HP Switch(config)# show running

Running configuration:

; J8697A Configuration Editor; Created on release #K.15.05.0001
; Ver #01:01:00

hostname "HP Switch"
module 1 type J8702A
vlan 1
 name "DEFAULT_VLAN"
 untagged A1-A24
 ip address dhcp-bootp
 exit
banner motd "This is a private system maintained by the
 Allied Widget Corporation.
 Unauthorized use of this system can result in
 civil and criminal penalties!"
password manager

HP Switch(config)#

Figure 1-5. Example of CLI Result of the Login Banner Configuration

The login screen displays the configured banner. Entering a correct password clears the banner and displays the CLI prompt.

This is a private system maintained by the
 Allied Widget Corporation.
 Unauthorized use of this system can result in
 civil and criminal penalties!

Password:
Operating Notes

- The default banner appears only when the switch is in the factory default configuration. Using `no banner motd` deletes the currently configured banner text and blocks display of the default banner. The default banner is restored only if the switch is reset to its factory-default configuration.

- The switch supports one banner at any time. Configuring a new banner replaces any former banner configured on the switch.

- If the switch is configured with `ssh version 1` or `ssh version 1-or-2`, configuring the banner sets the SSH configuration to ssh version 2 and displays the following message in the CLI:

 Warning: SSH version has been set to v2.

- If a banner is configured, the switch does not allow configuration with `ssh version 1` or `ssh version 1-or-2`. Attempting to do so produces the following error message in the CLI:

 Banner has to be disabled first.

- If a banner is enabled on the switch, the WebAgent displays the following link to the banner page:

 Notice to all users
User-Configurable Banner Message after Authentication

A text message that has been configured with the `banner motd` command displays with the authentication prompt when a user opens a console, telnet, SSH, or WebAgent session.

The `exec` option of the `banner` command allows a user-configurable message to be displayed after the user has been authenticated. If there is no password on the switch, the exec banner message displays immediately.

Syntax:

```
[n]o banner exec <ASCII-string>
```

Sets the exec banner text. Text can be multiple lines up to 3070 characters, and can consist of any printable character except the tilde (~) and the delimiting character.

<ASCII-string>: The text must end with a delimiting character, which can be any single character except the tilde (~) character.

The no version of the command removes the banner exec text.

```
HP Switch(config)# banner exec &
Enter TEXT message. End with the character &
This is Switch A in the language lab &
```

Figure 1-6. Example of the banner exec Command

To display the status and text for the exec banner configuration, use the `show banner exec` command.

```
HP Switch(config)# show banner exec

Banner Information

Banner Status: Enabled
Configured Banner:

This is Switch A in the language lab
```

Figure 1-7. Example Displaying Exec Banner Configuration
Banner MOTD Command with Non-Interactive Mode

The use of escape characters allows the `banner motd` command to be used in non-interactive mode for multiple message lines. In non-interactive mode, you can create a banner message enclosed in double quotes or other delimiter that uses escape characters within the delimiters. Other existing CLI commands do not support the escape characters. For more information on interactive and non-interactive mode, see “CLI Interactive Commands” on page 3-17 in this guide.

The following escape characters are supported:

\" double q
\' single quote
\` forward quote
\\ backslash
\f form feed
\n newline
\r carriage return
\t horizontal tab
\v vertical tab

```
HP Switch(config)# banner motd "You can use the \'banner motd\' CLI command in non-interactive mode.\n\nThe banner motd command will support escape characters."
```

```
HP Switch(config)# show banner motd
Banner Information
Banner status: Enabled
Configured Banner:
You can use the ‘banner motd’ CLI command in non-interactive mode.
   The banner motd command will support escape characters.
```

Figure 1-8. Example of Configuring the Banner Message Using Escape Characters Within Double Quote Delimiters
The running configuration file contains the banner message as entered in the command line.

```conf
HP Switch(config)# show running-config
Running configuration:
;J8693A Configuration Editor; Created on release #K.15.05.0002
;Ver #01:01:00
hostname 'HP Switch'
vlan 1
  name "DEFAULT_VLAN"
  untagged 1-48, a1-a4
  ip address dhcp-bootp
  exit
  banner motd "You can use the `banner motd` CLI command in non-interactive mode.

  The banner motd command will support escape characters."
```

Figure 1-9. Example of the Running Config File with Banner MOTD Configured in Non-interactive Mode

You can use a delimiting character other than quotes as well, as shown in Figure 1-10.

```conf
HP Switch(config)# banner motd #
  Enter TEXT message. End with the character `#`
  You can use the `\`banner motd` CLI command in non-interactive mode.
  The banner motd command will support escape characters.#
```

Figure 1-10. Example of Configuring the Banner Message Using an Alternate Delimiter of `#`
Getting Started
Login Banners
Using the Menu Interface

Overview

This chapter describes the following features:

- Overview of the Menu Interface (page 2-1)
- Starting and ending a Menu session (page 2-2)
- The Main Menu (page 2-6)
- Screen structure and navigation (page 2-8)
- Rebooting the switch (page 2-11)

The menu interface operates through the switch console to provide you with a subset of switch commands in an easy-to-use menu format enabling you to:

- Perform a “quick configuration” of basic parameters, such as the IP addressing needed to provide management access through your network
- Configure these features:
 - Manager and Operator passwords
 - System parameters
 - IP addressing
 - Time protocol
 - Ports
 - Trunk groups
 - A network monitoring port
 - SNMP community names
 - IP authorized managers
 - VLANs (Virtual LANs) and GVRP

- View status, counters, and Event Log information
- Update switch software
- Reboot the switch

For a detailed list of menu features, see the “Menu Features List” on page 2-13.

Privilege Levels and Password Security. HP strongly recommends that you configure a Manager password to help prevent unauthorized access to your network. A Manager password grants full read-write access to the switch. An Operator password, if configured, grants access to status and counter, Event Log, and the Operator level in the CLI. After you configure passwords on the switch and log off of the interface, access to the menu interface (and
Using the Menu Interface
Starting and Ending a Menu Session

the CLI and web browser interface) will require entry of either the Manager or Operator password. (If the switch has only a Manager password, then someone without a password can still gain read-only access.)

Note

If the switch has neither a Manager nor an Operator password, anyone having access to the console interface can operate the console with full manager privileges. Also, if you configure only an Operator password, entering the Operator password enables full manager privileges.

For more information on passwords, refer to the Access Security Guide for your switch.

Menu Interaction with Other Interfaces.

- The menu interface displays the current running-config parameter settings. You can use the menu interface to save configuration changes made in the CLI only if the CLI changes are in the running config when you save changes made in the menu interface. (For more on how switch memory manages configuration changes, see Chapter 5, “Switch Memory and Configuration”.)
- A configuration change made through any switch interface overwrites earlier changes made through any other interface.
- The Menu Interface and the CLI (Command Line Interface) both use the switch console. To enter the menu from the CLI, use the menu command. To enter the CLI from the Menu interface, select Command Line (CLI) option.

Starting and Ending a Menu Session

You can access the menu interface using any of the following:

- A direct serial connection to the switch’s console port, as described in the installation guide you received with the switch
- A Telnet connection to the switch console from a networked PC or the switch’s web browser interface. Telnet requires that an IP address and subnet mask compatible with your network have already been configured on the switch.
Using the Menu Interface
Starting and Ending a Menu Session

Note
This section assumes that either a terminal device is already configured and connected to the switch (see the Installation and Getting Started Guide shipped with your switch) or that you have already configured an IP address on the switch (required for Telnet access).

How To Start a Menu Interface Session

In its factory default configuration, the switch console starts with the CLI prompt. To use the menu interface with Manager privileges, go to the Manager level prompt and enter the menu command.

1. Use one of these methods to connect to the switch:
 - A PC terminal emulator or terminal
 - Telnet

2. Do one of the following:
 - If you are using Telnet, go to step 3.
 - If you are using a PC terminal emulator or a terminal, press [Enter] one or more times until a prompt appears.

3. When the switch screen appears, do one of the following:
 - If a password has been configured, the password prompt appears.

 Password: _

 Type the Manager password and press [Enter]. Entering the Manager password gives you manager-level access to the switch. (Entering the Operator password gives you operator-level access to the switch. Refer to the Access Security Guide for your switch.)

 - If no password has been configured, the CLI prompt appears. Go to the next step.

4. When the CLI prompt appears, display the Menu interface by entering the menu command. For example:

 HP Switch# menu [Enter]

 results in the following display:
Using the Menu Interface
Starting and Ending a Menu Session

![Main Menu Image]

For a description of Main Menu features, see “Main Menu Features” on page 2-6.

Note

To configure the switch to start with the menu interface instead of the CLI, go to the Manager level prompt in the CLI, enter the **setup** command, and in the resulting display, change the **Logon Default** parameter to **Menu**. For more information, see the Installation and Getting Started Guide you received with the switch.

How To End a Menu Session and Exit from the Console:

The method for ending a menu session and exiting from the console depends on whether, during the session, you made any changes to the switch configuration that require a switch reboot to activate. (Most changes via the menu interface need only a **Save**, and do not require a switch reboot.) Configuration changes needing a reboot are marked with an asterisk (*) next to the configured item in the menu and also next to the **Switch Configuration** item in the Main Menu.
Using the Menu Interface
Starting and Ending a Menu Session

1. In the current session, if you have not made configuration changes that require a switch reboot to activate, return to the Main Menu and press [0] (zero) to log out. Then just exit from the terminal program, turn off the terminal, or quit the Telnet session.

2. If you have made configuration changes that require a switch reboot—that is, if an asterisk (*) appears next to a configured item or next to Switch Configuration in the Main Menu:
 a. Return to the Main Menu.

Rebooting the switch terminates the menu session, and, if you are using Telnet, disconnects the Telnet session.
(See “Rebooting To Activate Configuration Changes” on page 2-12.)

3. Exit from the terminal program, turn off the terminal, or close the Telnet application program.

Figure 2-2. Example Indication of a Configuration Change Requiring a Reboot

1. Status and Counters...
2. Switch Configuration...
3. Console Passwords...
4. Event Log
5. Command Line (CLI)
6. Reboot Switch
7. Download OS
8. Run Setup
9. Logout

Displays the menu for customizing the switch configuration.
To select menu items, press item number, or highlight item and press <Enter>.
("Needs reboot to activate changes.")
Main Menu Features

Status and Counters: Provides access to display screens showing switch information, port status and counters, and port and VLAN address tables. (See Appendix B, “Monitoring and Analyzing Switch Operation” in the Management and Configuration Guide for your switch.)

Switch Configuration: Provides access to configuration screens for displaying and changing the current configuration settings. (See the Contents listing at the front of this manual.) For a listing of features and parameters configurable through the menu interface, see the “Menu Features List” on page 2-13. For an index of the features covered in the software manuals for your switch, see the “Software Feature Index” in the Management and Configuration Guide for your switch.

Console Passwords: Provides access to the screen used to set or change Manager-level and Operator-level passwords, and to delete Manager and Operator password protection. (Refer to the chapter on configuring usernames and passwords in the Access Security Guide for your switch.)
Using the Menu Interface
Main Menu Features

- **Event Log**: Enables you to read progress and error messages that are useful for checking and troubleshooting switch operation. (See Appendix C, “Using the Event Log for Troubleshooting Switch Problems” in the Management and Configuration Guide for your switch.)

- **Command Line (CLI)**: Selects the Command Line Interface at the same level (Manager or Operator) that you are accessing in the Menu interface. (Refer to Chapter 3, “Using the Command Line Interface (CLI)”.)

- **Reboot Switch**: Performs a “warm” reboot of the switch, which clears most temporary error conditions, resets the network activity counters to zero, and resets the system up-time to zero. A reboot is required to activate a change in the VLAN Support parameter. (See “Rebooting from the Menu Interface” on page 5-18.)

- **Download OS**: Enables you to download a new switch software version to the switch. (See Appendix A, “File Transfers” in the Management and Configuration Guide for your switch.)

- **Run Setup**: Displays the Switch Setup screen for quickly configuring basic switch parameters such as IP addressing, default gateway, logon default interface, and others. (Refer to the *Installation and Getting Started Guide* for your switch.)

- **Logout**: Closes the Menu interface and console session, and disconnects Telnet access to the switch. (See “How to End a Menu Session and Exit from the Console” on page 2-4.)
Screen Structure and Navigation

Menu interface screens include these three elements:

- Parameter fields and/or read-only information such as statistics
- Navigation and configuration actions, such as Save, Edit, and Cancel
- Help line to describe navigation options, individual parameters, and read-only data

For example, in the following System Information screen:

Figure 2-4. Elements of the Screen Structure

"Forms" Design. The configuration screens, in particular, operate similarly to a number of PC applications that use forms for data entry. When you first enter these screens, you see the current configuration for the item you have selected. To change the configuration, the basic operation is to:

1. Press [E] to select the Edit action.
2. Navigate through the screen making all the necessary configuration changes. (See Table 2-1 on page 2-9.)
3. Press [Enter] to return to the Actions line. From there you can save the configuration changes or cancel the changes. Cancel returns the configuration to the values you saw when you first entered the screen.
Using the Menu Interface
Screen Structure and Navigation

Table 2-1. How To Navigate in the Menu Interface

<table>
<thead>
<tr>
<th>Task: Execute an action from the "Actions ->" list at the bottom of the screen:</th>
<th>Actions:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Use either of the following methods:</td>
<td></td>
</tr>
<tr>
<td>• Use the arrow keys (←, →) to highlight the action you want to execute, then press [Enter].</td>
<td></td>
</tr>
<tr>
<td>• Press the key corresponding to the capital letter in the action name. For example, in a configuration menu, press [E] to select Edit and begin editing parameter values.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Task: Reconfigure (edit) a parameter setting or a field:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Select a configuration item, such as System Name. (See figure 2-4.)</td>
<td></td>
</tr>
<tr>
<td>3. Use [Tab] or the arrow keys (←, →, ↑, or ↓) to highlight the item or field.</td>
<td></td>
</tr>
<tr>
<td>4. Do one of the following:</td>
<td></td>
</tr>
<tr>
<td>– If the parameter has preconfigured values, either use the Space bar to select a new option or type the first part of your selection and the rest of the selection appears automatically. (The help line instructs you to “Select” a value.)</td>
<td></td>
</tr>
<tr>
<td>– If there are no preconfigured values, type in a value (the Help line instructs you to “Enter” a value).</td>
<td></td>
</tr>
<tr>
<td>5. If you want to change another parameter value, return to step 3.</td>
<td></td>
</tr>
<tr>
<td>6. If you are finished editing parameters in the displayed screen, press [Enter] to return to the Actions line and do one of the following:</td>
<td></td>
</tr>
<tr>
<td>– To save and activate configuration changes, press [S] (for the Save action). This saves the changes in the startup configuration and also implements the change in the currently running configuration. (See Chapter 5, “Switch Memory and Configuration”.)</td>
<td></td>
</tr>
<tr>
<td>– To exit from the screen without saving any changes that you have made (or if you have not made changes), press [C] (for the Cancel action).</td>
<td></td>
</tr>
</tbody>
</table>

Note: In the menu interface, executing Save activates most parameter changes and saves them in the startup configuration (or flash) memory, and it is therefore not necessary to reboot the switch after making these changes. But if an asterisk appears next to any menu item you reconfigure, the switch will not activate or save the change for that item until you reboot the switch. In this case, rebooting should be done after you have made all desired changes and then returned to the Main Menu.

7. When you finish editing parameters, return to the Main Menu.
8. If necessary, reboot the switch by highlighting Reboot Switch in the Main Menu and pressing [Enter]. (See the Note, above.)

<table>
<thead>
<tr>
<th>Task: Exit from a read-only screen.</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Press [B] (for the Back action).</td>
<td></td>
</tr>
</tbody>
</table>
To get Help on individual parameter descriptions. In most screens there is a Help option in the Actions line. Whenever any of the items in the Actions line is highlighted, press [H], and a separate help screen is displayed. For example:

![Figure 2-5. Example Showing How To Display Help](image)

To get Help on the actions or data fields in each screen: Use the arrow keys (←, →, ↑, or ↓) to select an action or data field. The help line under the Actions items describes the currently selected action or data field.

For guidance on how to navigate in a screen: See the instructions provided at the bottom of the screen, or refer to “Screen Structure and Navigation” on page 2-8.)
Rebooting the Switch

Rebooting the switch from the menu interface

- Terminates all current sessions and performs a reset of the operating system
- Activates any menu interface configuration changes that require a reboot
- Resets statistical counters to zero

(Note that statistical counters can be reset to zero without rebooting the switch.)

To Reboot the switch, use the **Reboot Switch** option in the Main Menu. (Note that **Reboot Switch** is not available if you log on in Operator mode; that is, if you enter an Operator password instead of a manager password at the password prompt.)

![Main Menu](image)

Figure 2-6. The Reboot Switch Option in the Main Menu
Using the Menu Interface
Rebooting the Switch

Rebooting To Activate Configuration Changes. Configuration changes for most parameters in the menu interface become effective as soon as you save them. However, you must reboot the switch in order to implement a change in the Maximum VLANs to support parameter. (To access this parameter, go to the Main Menu and select:

2. Switch Configuration
 8. VLAN Menu
 1. VLAN Support.

If you make configuration changes in the menu interface that require a reboot, the switch displays an asterisk (*) next to the menu item in which the change has been made. For example, if you change and save the value for the Maximum VLANs to support parameter, an asterisk appears next to the VLAN Support entry in the VLAN Menu screen, and also next to the Switch Configuration entry in the Main Menu.

Figure 2-7. Indication of a Configuration Change Requiring a Reboot

To activate changes indicated by the asterisk, go to the Main Menu and select the Reboot Switch option.

Note

Executing the write memory command in the CLI does not affect pending configuration changes indicated by an asterisk in the menu interface. That is, only a reboot from the menu interface or a boot or reload command from the CLI will activate a pending configuration change indicated by an asterisk.
Menu Features List

Status and Counters
- General System Information
- Switch Management Address Information
- Port Status
- Port Counters
- Address Table
- Port Address Table

Switch Configuration
- System Information
- Port/Trunk Settings
- Network Monitoring Port
- IP Configuration
- SNMP Community Names
- IP authorized Managers
- VLAN Menu

Console Passwords

Event Log

Command Line (CLI)

Reboot Switch

Download OS (Download Switch Software)

Run Setup

Logout

Port-Level Configuration on HP 3800 Switches with Stacking Enabled

When stacking is enabled on an HP 3800 switch, the procedures for configuring specific switch ports are the same as for HP 3800 switches without stacking enabled. However, the port designations for the ports in the stack are modi-
Using the Menu Interface

Where To Go From Here

That is, each port is identified by its switch's stack member ID followed by a slash and then the port number, as it is shown on the switch. For example, for a switch with stack member ID 3, port 10 on that switch is identified as port 3/10 for CLI command input and output. Entering a CLI command on an HP 3800 switch configured for stacking without using the modified port designation results in the following message:

Module not present for port or invalid port

For more on this topic, see “Interaction with Other Switch Features” in the “Stack Management” chapter of the latest Management and Configuration Guide for HP 3800 switches.

Where To Go From Here

This chapter provides an overview of the menu interface and how to use it. The following table indicates where to turn for detailed information on how to use the individual features available through the menu interface.

<table>
<thead>
<tr>
<th>Option</th>
<th>Turn to:</th>
</tr>
</thead>
<tbody>
<tr>
<td>To use the Run Setup option</td>
<td>Refer to the Installation and Getting Started Guide shipped with the switch.</td>
</tr>
<tr>
<td>To learn how to configure and use passwords and other security features</td>
<td>Refer to the Access Security Guide for your switch.</td>
</tr>
<tr>
<td>To learn how the CLI operates</td>
<td>Chapter 3, “Using the Command Line Interface (CLI)”</td>
</tr>
<tr>
<td>Option</td>
<td>Turn to:</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>For a description of how switch memory handles configuration changes</td>
<td>Chapter 5, “Switch Memory and Configuration”</td>
</tr>
</tbody>
</table>
Using the Menu Interface
Where To Go From Here
Using the Command Line Interface (CLI)

Overview

The CLI is a text-based command interface for configuring and monitoring the switch. The CLI gives you access to the switch’s full set of commands while providing the same password protection that is used in the web browser interface (WebAgent) and the menu interface.

Accessing the CLI

Like the menu interface, the CLI is accessed through the switch console, and in the switch's factory default state, is the default interface when you start a console session. You can access the console out-of-band by directly connecting a terminal device to the switch, or in-band by using Telnet either from a terminal device or through the WebAgent.

Also, if you are using the menu interface, you can access the CLI by selecting the Command Line (CLI) option in the Main Menu.

Using the CLI

The CLI offers these privilege levels to help protect the switch from unauthorized access:

1. Operator
2. Manager
3. Global Configuration
4. Context Configuration
Using the Command Line Interface (CLI)

CLI commands are not case-sensitive.

When you use the CLI to make a configuration change, the switch writes the change to the Running-Config file in volatile memory. This allows you to test your configuration changes before making them permanent. To make changes permanent, you must use the **write memory** command to save them to the Startup-Config file in non-volatile memory. If you reboot the switch without first using **write memory**, all changes made since the last reboot or **write memory** (whichever is later) will be lost. For more on switch memory and saving configuration changes, see Chapter 5, “Switch Memory and Configuration”.

Privilege Levels at Logon

Privilege levels control the type of access to the CLI. To implement this control, you must set at least a Manager password. *Without a Manager password configured, anyone having serial port, Telnet, or web browser access to the switch can reach all CLI levels.* (For more on setting passwords, refer to the chapter on usernames and passwords in the *Access Security Guide* for your switch.)

When you use the CLI to log on to the switch, and passwords are set, you will be prompted to enter a password. For example:

```
Password: _
```

Figure 3-1. Example of CLI Log-On Screen with Password(s) Set

In the above case, you will enter the CLI at the level corresponding to the password you provide (operator or manager).
Using the Command Line Interface (CLI)

If no passwords are set when you log onto the CLI, you will enter at the Manager level. For example:

HP Switch#_

Caution

HP strongly recommends that you configure a Manager password. If a Manager password is not configured, then the Manager level is not password-protected, and anyone having in-band or out-of-band access to the switch may be able to reach the Manager level and compromise switch and network security. Note that configuring only an Operator password *does not* prevent access to the Manager level by intruders who have the Operator password.

Pressing the Clear button on the front of the switch removes password protection. *For this reason, it is recommended that you protect the switch from physical access by unauthorized persons.* If you are concerned about switch security and operation, you should install the switch in a secure location, such as a locked wiring closet.

Privilege Level Operation

![Access Sequence for Privilege Levels](image)

Figure 3-2. Access Sequence for Privilege Levels

Operator Privileges

At the Operator level you can examine the current configuration and move between interfaces without being able to change the configuration. A “>” character delimits the Operator-level prompt. For example:

HP Switch> _

(Example of the Operator prompt.)

When using **enable** to move to the Manager level, the switch prompts you for the Manager password if one has already been configured.
Manager Privileges

Manager privileges give you three additional levels of access: Manager, Global Configuration, and Context Configuration. A “#” character delimits any Manager prompt. For example:

```
HP Switch#_ Example of the Manager prompt.
```

- **Manager level**: Provides all Operator level privileges plus the ability to perform system-level actions that do not require saving changes to the system configuration file. The prompt for the Manager level contains only the system name and the “#” delimiter, as shown above. To select this level, enter the `enable` command at the Operator prompt and enter the Manager password, when prompted. For example:

  ```
  HP Switch> enable Enter enable at the Operator prompt.
  Password: CLI prompt for the Manager password.
  HP Switch# _ The Manager prompt appears after the correct Manager password is entered.
  ```

- **Global Configuration level**: Provides all Operator and Manager level privileges, and enables you to make configuration changes to any of the switch’s software features. The prompt for the Global Configuration level includes the system name and “(config)”. To select this level, enter the `config` command at the Manager prompt. For example:

  ```
  HP Switch# config Enter config at the Manager prompt.
  HP Switch(config)#_ The Global Config prompt.
  ```

- **Context Configuration level**: Provides all Operator and Manager privileges, and enables you to make configuration changes in a specific context, such as one or more ports or a VLAN. The prompt for the Context Configuration level includes the system name and the selected context. For example:

  ```
  HP Switch(config)# vlan 10
  HP Switch(vlan-10)#
  ```

 The Context level is useful, for example, for executing several commands directed at the same port or VLAN, or if you want to shorten the command strings for a specific context area. To select this level, enter the specific context at the Global Configuration level prompt. For example, to select the context level for an existing VLAN with the VLAN ID of 10, you would enter the following command and see the indicated result:

  ```
  HP Switch(config)# vlan 10
  HP Switch(vlan-10)#
  ```
Table 3-1. Privilege Level Hierarchy

<table>
<thead>
<tr>
<th>Privilege Level</th>
<th>Example of Prompt and Permitted Operations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operator Privilege</td>
<td></td>
</tr>
<tr>
<td>Operator Level</td>
<td>HP Switch> show <command></td>
</tr>
<tr>
<td></td>
<td>setup</td>
</tr>
<tr>
<td></td>
<td>ping <argument></td>
</tr>
<tr>
<td></td>
<td>link-test <argument></td>
</tr>
<tr>
<td></td>
<td>enable</td>
</tr>
<tr>
<td></td>
<td>menu</td>
</tr>
<tr>
<td></td>
<td>logout</td>
</tr>
<tr>
<td></td>
<td>exit</td>
</tr>
<tr>
<td>Manager Privilege</td>
<td></td>
</tr>
<tr>
<td>Manager Level</td>
<td>HP Switch#</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Global</td>
<td>HP Switch(config)#</td>
</tr>
<tr>
<td>Configuration</td>
<td></td>
</tr>
<tr>
<td>Level</td>
<td></td>
</tr>
<tr>
<td>Context</td>
<td>HP Switch(eth-5)#</td>
</tr>
<tr>
<td>Configuration</td>
<td></td>
</tr>
<tr>
<td>Level</td>
<td>HP Switch(vlan-100)#</td>
</tr>
</tbody>
</table>
How To Move Between Levels

<table>
<thead>
<tr>
<th>Change in Levels</th>
<th>Example of Prompt, Command, and Result</th>
</tr>
</thead>
</table>
| Operator level to Manager level | HP Switch> enable
Password:_
After you enter **enable**, the Password prompt appears. After you enter the Manager password, the system prompt appears with the # symbol:
HP Switch#_ |
| Manager level to Global configuration level | HP Switch# config
HP Switch(config)# |
| Global configuration level to a Context configuration level | HP Switch(config)# vlan 10
HP Switch(vlan-10)# |
| Context configuration level to another Context configuration level | HP Switch(vlan-10)# interface e 3
HP Switch(int-3)#
The CLI accepts "e" as the abbreviated form of "ethernet".
HP Switch(int-3)# exit
HP Switch(config)# exit
HP Switch# exit
HP Switch> |
| Move from any level to the preceding level | HP Switch(int-3)# end
HP Switch(config)# end
HP Switch# -or-
HP Switch(config)# end
HP Switch# |
| Move from any level to the Manager level | |

Moving Between the CLI and the Menu Interface. When moving between interfaces, the switch retains the current privilege level (Manager or Operator). That is, if you are at the Operator level in the menu and select the **Command Line Interface (CLI)** option from the Main Menu, the CLI prompt appears at the Operator level.

Changing Parameter Settings. Regardless of which interface is used (CLI, menu interface, or WebAgent), the most recently configured version of a parameter setting overrides any earlier settings for that parameter. For exam-
ple, if you use the menu interface to configure an IP address of “X” for VLAN 1 and later use the CLI to configure a different IP address of “Y” for VLAN 1, then “Y” replaces “X” as the IP address for VLAN 1 in the running-config file. If you subsequently execute `write memory` in the CLI, then the switch also stores “Y” as the IP address for VLAN 1 in the startup-config file. (For more on the startup-config and running config files, see Chapter 5, “Switch Memory and Configuration”.)

Listing Commands and Command Options

At any privilege level you can:
- List all of the commands available at that level
- List the options for a specific command

Listing Commands Available at Any Privilege Level

At a given privilege level you can list and execute the commands that level offers, plus all of the commands available at preceding levels. For example, at the Operator level, you can list and execute only the Operator level commands. However, at the Manager level, you can list and execute the commands available at both the Operator and Manager levels.

Type “?” To List Available Commands. Typing the `?` symbol lists the commands you can execute at the current privilege level. For example, typing `?` at the Operator level produces this listing:

```
HP Switch> ?
    enable
    exit
    link-test
    logout
    menu
    ping
    show
    traceroute

HP Switch>
```

Figure 3-3. Example of the Operator Level Command Listing
Using the Command Line Interface (CLI)

Typing `?` at the Manager level produces this listing:

```
HP Switch# ?
  boot  Reboot the device.
  clear Clear table/statistics or authorized client public
          keys.
  configure Enter the Configuration context.
  copy    Copy datafiles to/from the switch.
  debug   Enable/disable debug logging.
  end     Return to the Manager Exec context.
  erase   Erase stored data files.
  getMIB  Retrieve and display the value of the MIB objects
          specified.
  kill    Kill other active console, telnet, or ssh sessions.
  licenses Manage premium features.
  log     Display log events.
  print   Execute a command and redirect its output to the device
          channel for current session.
  redo    Re-execute a command from history.
  redundancy Redundancy configuration for management modules.
  reload  Warm reboot of the switch.
  rename  Change the name of the configuration OLDNAME to
          NEWNAME.
  repeat  Repeat execution of a previous command.
  services Display parameters for the services module or change
          --MORE -- next page: Space, next line: Enter, quit: Control-C
```

Figure 3-4. Example of the Manager-Level Command Listing

When `--MORE--` appears, there are more commands in the listing. To list the next screenfull of commands, press the Space bar. To list the remaining commands one-by-one, repeatedly press [Enter].

Typing `?` at the Global Configuration level or the Context Configuration level produces similar results.

Use [Tab] To Search for or Complete a Command Word. You can use [Tab] to help you find CLI commands or to quickly complete the current word in a command. To do so, type one or more consecutive characters in a command and then press [Tab] (with no spaces allowed). For example, at the Global Configuration level, if you press [Tab] immediately after typing “t”, the CLI displays the available command options that begin with “t”. For example:

```
HP Switch(config)# t [Tab]
tacacs-server
telnet-server
```
time
timesync
trunk
telnet
terminal	traceroute

HP Switch(config)# t

As mentioned above, if you type part of a command word and press [Tab], the CLI completes the current word (if you have typed enough of the word for the CLI to distinguish it from other possibilities), including hyphenated extensions. For example:

HP Switch(config)# port-[Tab]
HP Switch(config)# port-security _

Pressing [Tab] after a completed command word lists the further options for that command.

HP Switch(config)# qos [Tab]

udp-portSet UDP port based priority.
tcp-portSet TCP port based priority.
device-priorityConfigure device-based priority.
dscp-mapDefine mapping between a DSCP (Differentiated-Services Codepoint) value and 802.1p priority.
type-of-serviceConfigure the Type-of-Service method the device uses to prioritize IP traffic.

Listing Command Options

You can use the CLI to remind you of the options available for a command by entering command keywords followed by ?. For example, suppose you want to see the command options for configuring the console settings:
Using the Command Line Interface (CLI)

Using the CLI

Displaying CLI “Help”

CLI Help provides two types of context-sensitive information:

- Command list with a brief summary of each command’s purpose
- Detailed information on how to use individual commands

Displaying Command-List Help.

Syntax: help

Displays a listing of command Help summaries for all commands available at the current privilege level. That is, at the Operator level, executing help displays the Help summaries only for Operator-Level commands. At the Manager level, executing help displays the Help summaries for both the Operator and Manager levels, and so on.

For example, to list the Operator-Level commands with their purposes:
Using the Command Line Interface (CLI)

Using the CLI

Figure 3-6. Example of Context-Sensitive Command-List Help

Displaying Help for an Individual Command.

Syntax: <command-string> help

This option displays Help for any command available at the current context level.

For example, to list the Help for the interface command in the Global Configuration privilege level:

```
HP Switch(config)# interface help
Usage: [no] interface < [ethernet] PORT-LIST [...] | loopback <num> >
Description: Enter the Interface Configuration Level, or execute one command for that level. Without optional parameters specified, the 'interface' command changes the context to the Interface Configuration Context Level for execution of configuration changes to the port or ports in the PORT-LIST or with loopback keyword it will change context to loopback mode. Use 'interface ?' to get a list of all valid commands.
```

Figure 3-7. Example of How To Display Help for a Specific Command

Note that trying to list the help for an individual command from a privilege level that does not include that command results in an error message. For example, trying to list the help for the interface command while at the global configuration level produces this result:

```
HP Switch# speed-duplex help
Invalid input: speed-duplex
```
Configuration Commands and the Context Configuration Modes

You can execute any configuration command in the global configuration mode or in selected context modes. However, using a context mode enables you to execute context-specific commands faster, with shorter command strings.

The switch offers interface (port or trunk group) and VLAN context configuration modes:

Port or Trunk-Group Context. Includes port- or trunk-specific commands that apply only to the selected port(s) or trunk group, plus the global configuration, Manager, and Operator commands. The prompt for this mode includes the identity of the selected port(s):

```
HP Switch(config)# interface c3-c6
HP Switch(eth-C5-C8)#

HP Switch(config)# interface trk1
HP Switch(eth-Trk1)#
```

Commands executed at configuration level for entering port and trk1 static trunk-group contexts, and resulting prompts showing port or static trunk contexts.

```
HP Switch(eth-C5-C8)#
HP Switch(eth-Trk1)#

HP Switch(eth-C5-C8)# ?
HP Switch(eth-C5-C8)# ?
```

Lists the commands you can use in the port or static trunk context, plus the Manager, Operator, and context commands you can execute at this level.
Using the Command Line Interface (CLI)

Using the CLI

Figure 3-8. Context-Specific Commands Affecting Port Context

In the port context, the first block of commands in the "?" listing show the context-specific commands that will affect only ports C3-C6.

The remaining commands in the listing are Manager, Operator, and context commands.

HP-Switch(eth-C3-C6)# ?
arp-protect Configure the port as trusted or untrusted.
bandwidth-min Enable/disable and configure guaranteed minimum bandwidth settings for outgoing traffic on the port(s).
broadcast-limit Set a broadcast traffic percentage limit.
dhcp-snooping Configure the port as trusted or untrusted.
disable Disable port(s).
enable Enable port(s).
energy-efficient-e... Enables or disables EEE on each port in the port list.
flow-control Enable/disable flow control negotiation on the port(s) during link establishment.
gvrp Set the GVRP timers on the port (hundredths of a second).
ip Apply the specified access control list to inbound packets on this INTERFACE list.
ipv6 Configure various IPv6 parameters for the VLAN.
lacp Define whether LACP is enabled on the port, and whether it is in active or passive mode when enabled.
... class Create a classifier class and enter the class context.
interface Enter the Interface Configuration Level, or execute one command for that level.
policy Create a classifier policy and enter the policy context.
...
Using the Command Line Interface (CLI)
Using the CLI

VLAN Context. Includes VLAN-specific commands that apply only to the selected VLAN, plus Manager and Operator commands. The prompt for this mode includes the VLAN ID of the selected VLAN. For example, if you had already configured a VLAN with an ID of 100 in the switch:

```
HP Switch(config)# vlan 100

Command executed at configuration level to enter VLAN 100 context.
HP Switch(vlan-100)#

Resulting prompt showing VLAN 100 context.
HP Switch(vlan-100)# ?

Lists commands you can use in the VLAN context, plus Manager, Operator, and context commands you can execute at this level.
```
In the VLAN context, the first block of commands in the “?” listing show the commands that will affect only vlan-100.

HP Switch(vlan-100)#

- **connection-rate-f**... Re-enables access to a host or set of hosts that has been previously blocked by the connection rate filter.
- **dhcp-snooping**
- **disable** Enable/Disable various features on the switch.
- **forbid** Prevent ports from becoming a member of the current VLAN.
- **igmp-proxy** Associate an IGMP proxy domain with a VLAN.
- **ip** Configure various IP parameters for the VLAN.
- **ip-recv-mac-address** Associates a L3-mac-address with a VLAN.
- **ipv6** Configure various IPv6 parameters for the VLAN.
- **jumbo** Labels this VLAN as a Jumbo VLAN, allowing you to pass packets up to 9216 bytes in size.
- **monitor** Define either the VLAN is to be monitored or not.
- **name** Set the VLAN's name.
- **protocol** Set a predefined protocol for the current VLAN.
- **qos** Set VLAN-based priority.
- **service-policy** Apply the QoS/Mirror policy on the vlan.
- **tagged** Assign ports to current VLAN as tagged.
- **untagged** Assign ports to current VLAN as untagged.
- **voice** Labels this VLAN as a Voice VLAN, allowing you to separate, prioritize, and authenticate voice traffic moving through your network.
- **vrrp** Enable/disable/ Configure VRRP operation on the VLAN.

The remaining commands in the listing are Manager, Operator, and context commands.

Figure 3-9. Context-Specific Commands Affecting VLAN Context
Return Message Types with CLI Commands

When a CLI command returns a message, that message is now prefixed with a category describing the type, as follows:

- Error
- Warning
- Information

Syntax:
```
session show-message-type [enable | disable]
```

When enabled, the CLI return messages are prefixed with string that indicates the type of message. Entered at the manager level.

The disable option disables prefixing returned messages for the session for which this command is executed.

Note: This setting is not saved when the switch is rebooted.

Default: Disabled on all CLI sessions

Figure 3-10. Examples of Message Prefixes

To determine if message labeling is enabled, enter the `show session` command.
Using the Command Line Interface (CLI)

CLI Interactive Commands

When the CLI interactive command mode is enabled, you must explicitly enter the choice of yes (y) or no (n) for interactive commands. When interactive command mode is disabled, the default choice for all command is yes, except as noted below. The CLI interactive mode command enables or disables interactive mode for the CLI session.

Syntax:

```
 session interactive-mode [enable | disable]
```

Enables or disables interactive mode for the CLI session.

The **disable** option disables interactive mode. The default choice for yes/no interactive commands will be **yes** except for commands when there is a prompt to save the config. The default for that is **no**.

The default choice for rebooting the switch is **yes**.

Note: This setting is not saved when the switch is rebooted.

Default: Enabled on all sessions.

HP Switch(config)# show session
Show Message Type: Enabled
CLI Interactive Mode: Enabled

Figure 3-11. Example Showing the label cli-return-message Command is Enabled

HP Switch(config)# no password all
Password protection for all will be deleted, continue [y/n]? y

Default choice is yes.

HP Switch(config)# boot system flash secondary
System will be rebooted from secondary image. Do you want to continue [y/n]? y
Do you want to save current configuration [y/n]? n

Default choice for reboot is yes. Default choice for saving the current configuration is no.

Figure 3-12. Example of CLI Interactive Mode When Disabled

Using the Command Line Interface (CLI)

CLI Interactive Commands

To determine if the CLI interactive mode is enabled or disabled, enter the `show session` command.

```
HP Switch(config)# show session
Show Message Type: Enabled
CLI Interactive Mode: Enabled
```

Figure 3-13. Example Showing CLI Interactive Mode is Enabled

Interactive Commands Requiring Additional Options

Interactive commands that require input other than yes or no are not affected when CLI interactive mode is disabled. A warning message is displayed when these commands are executed, for example:

```
Interactive mode is disabled; This command will be ignored. Enable cli-interactive-mode to use this command.
```

The following commands will issue this warning when interactive mode is disabled. An alternate way to enter the command (when one is available) is shown.

<table>
<thead>
<tr>
<th>Command</th>
<th>Non-Interactive Alternate Command</th>
</tr>
</thead>
<tbody>
<tr>
<td>setup mgmt-interfaces</td>
<td>No equivalent non-interactive command</td>
</tr>
<tr>
<td>aaa port-access supplicant <port-list> secret</td>
<td>aaa port-access supplicant <port-list> secret <secret-string></td>
</tr>
<tr>
<td>password manager</td>
<td>password manager plaintext <password-string></td>
</tr>
<tr>
<td>password operator</td>
<td>password operator plaintext <password-string></td>
</tr>
<tr>
<td>aaa port-access supplicant <port-list> secret</td>
<td>aaa port-access supplicant <port-list> secret <secret-string></td>
</tr>
<tr>
<td>crypto host-cert generate self-signed</td>
<td>crypto host-cert generate self-signed <start-date> <end-date> <CNAME-STR> <ORG-UNIT-STR> <ORGANIZATION-STR> <CITY-STR> <STATE-STR> <code></td>
</tr>
</tbody>
</table>
Menu Commands

When CLI interactive mode is disabled, all CLI commands that launch the menu interface will not be affected by the interactive mode. A warning message is displayed, for example:

```
HP Switch(config)# menu
Interactive mode is disabled; This command will be ignored. Enable cli-interactive-mode to use this command.
```

Other menu-based commands that will not be affected are:
- `setup`
- `show interfaces display`

SNMPv3 Special Cases

The following are special cases when using SNMPv3 with interactive mode.

- **snmpv3 user**: In interactive mode, the command `snmpv3 user` will create SNMPv3 users, even if SNMPv3 has not been enabled.
- **snmpv3 enable**: When interactive mode is disabled, this command only enables SNMPv3. It does not prompt for an authentication password. When the command is first executed, a default initial user is created. A message displays:

 User ‘initial’ has been created.

Banner MOTD Command with Non-Interactive Mode

The use of escape characters allows the `banner motd` command to be used in non-interactive mode for multiple message lines. In non-interactive mode, you can create a banner message enclosed in double quotes or other delimiter that uses escape characters within the delimiters. Other existing CLI commands do not support the escape characters.

The following escape characters are supported:

<table>
<thead>
<tr>
<th>Escape Character</th>
<th>Meaning</th>
</tr>
</thead>
</table>
| \\
| double q |
| ' | single quote |
| \` | forward quote |
Using the Command Line Interface (CLI)

CLI Interactive Commands

<table>
<thead>
<tr>
<th>Escape Character</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>\</td>
<td>backslash</td>
</tr>
<tr>
<td>\f</td>
<td>form feed</td>
</tr>
<tr>
<td>\n</td>
<td>newline</td>
</tr>
<tr>
<td>\r</td>
<td>carriage return</td>
</tr>
<tr>
<td>\t</td>
<td>horizontal tab</td>
</tr>
<tr>
<td>\v</td>
<td>vertical tab</td>
</tr>
</tbody>
</table>

HP Switch(config)# banner motd "You can use the \'banner motd\' CLI command in non-interactive mode.\n\nThe banner motd command will support escape characters."

HP Switch(config)# show banner motd

Banner Information
Banner status: Enabled
Configured Banner:
You can use the ‘banner motd’ CLI command in non-interactive mode.

The banner motd command will support escape characters.”

Figure 3-14. Example of Configuring the Banner Message Using Escape Characters Within Double Quote Delimiters

The running configuration file contains the banner message as entered in the command line.
Using the Command Line Interface (CLI)

CLI Interactive Commands

You can use a delimiting character other than quotes as well, as shown in Figure 3-16.

```plaintext
HP Switch(config)# show running-config
Running configuration:
;
hostname "HP Switch"

vlan 1
  name "DEFAULT_VLAN"
  untagged 1-48, a1-a4
  ip address dhcp-bootp
exit

banner motd "You can use the 'banner motd' CLI command in non-interactive mode.\n\nThe banner motd command will support escape characters."
```

Figure 3-15. Example of the Running Config File with Banner MOTD Configured in Non-interactive Mode

You can use a delimiting character other than quotes as well, as shown in Figure 3-16.

```plaintext
HP Switch(config)# banner motd #
Enter TEXT message. End with the character '#'
You can use the 'banner motd' CLI command in non-interactive mode.\n\nThe banner motd command will support escape characters.#
```

Figure 3-16. Example of Configuring the Banner Message Using an Alternate Delimiter of '#'
Using the Command Line Interface (CLI)

CLI Control and Editing

Executing a Prior Command—Redo

The redo command executes a prior command in the history list.

Syntax: redo [number | command-str]

Re-executes a command from history. Executes the last command by default.

number: The position of the command to execute in the history list. When **number** is specified, the nth command starting from the most recent command in the history is executed.

command-str: When **command-str** is specified, the most recent command whose name matches the specified string is executed.

```
HP Switch(config)# show history
2       show arp
1       show flash
```

```
HP Switch(config)# redo 2
```

Figure 3-17. Example of the redo Command
Repeating Execution of a Command

The **repeat** command executes a previous command in the history list.

Syntax: repeat [cmdlist] [count] [delay]

Repeats execution of a previous command. Repeats the last command by default until a key is pressed.

cmdlist: If a number or range of numbers is specified, the command repeats the nth most recent commands (where “n” is the position in the history list).

count: Repeats the command for the number of times specified.

delay: The command repeats execution after a delay for the number of seconds specified.

For example:

HP Switch(config)# repeat 1-4,7-8,10 count 2 delay 3
Using a Command Alias

You can create a simple command alias to use in place of a command name and its options. Choose an alias name that is not an existing CLI command already. Existing CLI commands are searched before looking for an alias command; an alias that is identical to an existing command will not be executed.

The alias command is executed from the current configuration context (operator, manager, or global). If the command that is aliased has to be executed in the global configuration context, you must execute the alias for that command in the global configuration context as well. This prevents bypassing the security in place for a particular context.
Using the Command Line Interface (CLI)

CLI Control and Editing

HP recommends that you configure no more than 128 aliases.

Syntax: [no] alias <name> <command>

Creates a shortcut alias name to use in place of a commonly used command. The alias command is executed from the current config context.

name: Specifies the new command name to use to simplify keystrokes and aid memory.

command: Specifies an existing command to be aliased. The command must be enclosed in quotes.

Use the no form of the command to remove the alias.

For example, if you use the show interface custom command to specify the output, you can configure an alias for the command to simplify execution. It is recommended that you use an alias that does not have an existing tab completion in the CLI. For example, using an alias that starts with “show” or “int” would complete to “show” and “interface” respectively when you use the tab completion function.
Using the Command Line Interface (CLI)

CLI Control and Editing

Figure 3-19. Example of Using the Alias Command with show int custom

```plaintext
HP Switch(config)# show int custom 1-4 port name:4 type vlan intrusion speed enabled mdi

Status and Counters - Custom Port Status

<table>
<thead>
<tr>
<th>Port</th>
<th>Name</th>
<th>Type</th>
<th>VLAN</th>
<th>Alert</th>
<th>Speed</th>
<th>Enabled</th>
<th>MDI-mode</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Acco</td>
<td>100/1000T</td>
<td>1</td>
<td>No</td>
<td>1000FDx</td>
<td>Yes</td>
<td>Auto</td>
</tr>
<tr>
<td>2</td>
<td>Huma</td>
<td>100/1000T</td>
<td>1</td>
<td>No</td>
<td>1000FDx</td>
<td>Yes</td>
<td>Auto</td>
</tr>
<tr>
<td>3</td>
<td>Deve</td>
<td>100/1000T</td>
<td>1</td>
<td>No</td>
<td>1000FDx</td>
<td>Yes</td>
<td>Auto</td>
</tr>
<tr>
<td>4</td>
<td>Lab1</td>
<td>100/1000T</td>
<td>1</td>
<td>No</td>
<td>1000FDx</td>
<td>Yes</td>
<td>Auto</td>
</tr>
</tbody>
</table>

HP Switch(config)# alias sic "show int custom 1-4 port name:4 type vlan intrusion speed enabled mdi"

HP Switch(config)#

HP Switch(config)# sic

Status and Counters - Custom Port Status

<table>
<thead>
<tr>
<th>Port</th>
<th>Name</th>
<th>Type</th>
<th>VLAN</th>
<th>Alert</th>
<th>Speed</th>
<th>Enabled</th>
<th>MDI-mode</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Acco</td>
<td>100/1000T</td>
<td>1</td>
<td>No</td>
<td>1000FDx</td>
<td>Yes</td>
<td>Auto</td>
</tr>
<tr>
<td>2</td>
<td>Huma</td>
<td>100/1000T</td>
<td>1</td>
<td>No</td>
<td>1000FDx</td>
<td>Yes</td>
<td>Auto</td>
</tr>
<tr>
<td>3</td>
<td>Deve</td>
<td>100/1000T</td>
<td>1</td>
<td>No</td>
<td>1000FDx</td>
<td>Yes</td>
<td>Auto</td>
</tr>
<tr>
<td>4</td>
<td>Lab1</td>
<td>100/1000T</td>
<td>1</td>
<td>No</td>
<td>1000FDx</td>
<td>Yes</td>
<td>Auto</td>
</tr>
</tbody>
</table>
```

Note

Remember to enclose the command being aliased in quotes.

Command parameters for the aliased command can be added at the end of the alias command string. For example:

```plaintext
HP Switch(config)# alias sc "show config"
```

To change the command that is aliased, re-execute the alias name with new command options. The new options are used when the alias is executed.

To display the alias commands that have been configured, enter the `show alias` command.
Using the Command Line Interface (CLI)
CLI Control and Editing

Figure 3-20. Example of Alias Commands and Their Configurations

<table>
<thead>
<tr>
<th>Name</th>
<th>Command</th>
</tr>
</thead>
<tbody>
<tr>
<td>sc</td>
<td>show config</td>
</tr>
<tr>
<td>sic</td>
<td>show int custom 1-4 port name:4 type vlan intrusion speed enabled mdi</td>
</tr>
</tbody>
</table>

CLI Shortcut Keystrokes

<table>
<thead>
<tr>
<th>Keystrokes</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>[Ctrl][A]</td>
<td>Jumps to the first character of the command line.</td>
</tr>
<tr>
<td>[Ctrl][B] or ←</td>
<td>Moves the cursor back one character.</td>
</tr>
<tr>
<td>[Ctrl][C]</td>
<td>Terminates a task and displays the command prompt.</td>
</tr>
<tr>
<td>[Ctrl][D]</td>
<td>Deletes the character at the cursor.</td>
</tr>
<tr>
<td>[Ctrl][E]</td>
<td>Jumps to the end of the current command line.</td>
</tr>
<tr>
<td>[Ctrl][F] or →</td>
<td>Moves the cursor forward one character.</td>
</tr>
<tr>
<td>[Ctrl][K]</td>
<td>Deletes from the cursor to the end of the command line.</td>
</tr>
<tr>
<td>[Ctrl][L] or [Ctrl][R]</td>
<td>Repeats current command line on a new line.</td>
</tr>
<tr>
<td>[Ctrl][N] or ↓</td>
<td>Enters the next command line in the history buffer.</td>
</tr>
<tr>
<td>[Ctrl][P] or ↑</td>
<td>Enters the previous command line in the history buffer.</td>
</tr>
<tr>
<td>[Ctrl][U] or [Ctrl][X]</td>
<td>Deletes from the cursor to the beginning of the command line.</td>
</tr>
<tr>
<td>[Ctrl][W]</td>
<td>Deletes the last word typed.</td>
</tr>
<tr>
<td>[Esc][B]</td>
<td>Moves the cursor backward one word.</td>
</tr>
<tr>
<td>[Esc][D]</td>
<td>Deletes from the cursor to the end of the word.</td>
</tr>
<tr>
<td>[Esc][F]</td>
<td>Moves the cursor forward one word.</td>
</tr>
<tr>
<td>[Backspace]</td>
<td>Deletes the first character to the left of the cursor in the command line.</td>
</tr>
<tr>
<td>[Spacebar]</td>
<td>Moves the cursor forward one character.</td>
</tr>
</tbody>
</table>
Port-Level Configuration on HP 3800 Switches with Stacking Enabled

When stacking is enabled on an HP 3800 switch, the procedures for configuring specific switch ports are the same as for HP 3800 switches without stacking enabled. However, the port designations for the ports in the stack are modified. That is, each port is identified by its switch's stack member ID followed by a slash and then the port number, as it is shown on the switch. For example, for a switch with stack member ID 3, port 10 on that switch is identified as port 3/10 for CLI command input and output. Entering a CLI command on an HP 3800 switch configured for stacking without using the modified port designation results in the following message:

Module not present for port or invalid port

For more on this topic, see “Interaction with Other Switch Features” in the “Stack Management” chapter of the latest Management and Configuration Guide for HP 3800 switches.
Using the HP WebAgent

Overview

The HP web browser interface (WebAgent) built into the switch lets you easily access the switch from a web browser. You can do the following:

- Optimize your network uptime by using the Alert Log and other diagnostic tools
- Make configuration changes to the switch
- Maintain security by configuring usernames and passwords
- Monitor the status of system configurations, power management, and traffic management

This chapter covers the following:

- General features (page 4-2)
- Starting the WebAgent (page 4-4)
- Tasks for your first WebAgent session (page 4-5)
- Accessing Online Help (page 4-7)
- Connecting to the WebAgent from HP PCM+ (page 4-7)

Note

You can disable access to the WebAgent by either executing `no web-management` at the CLI prompt or changing the `Web Agent Enabled` parameter setting to `No` in the menu interface (page 4-4).

For information on operating system, browser, and Java versions for the switches covered in this guide, go to the HP Networking web site at www.hp.com/faqs, select your switch (for example, *HP Switch 8212zl*), and then scroll to *General Product Information*.

For users who do not have internet access, you can download and install help files on the PCM+ server or Web server. For more information, go to the Download device help web site at www.hp.com/rnd/device_help/download.htm.
General Features

The WebAgent includes this information:

- **Home**
 - Quick Setup—Name, contact, IP, and VLAN information
 - Status—Information about system uptime, switch addresses and serial number, VLANs, power, redundancy status, alert log, and utilization statistics

- **System**
 - Logging—Fault detection, alert log
 - SNMP—Community name and access, trap receivers, link status change
 - Updates/Downloads—Configuration files, software images
 - Redundancy—Management module status, fabric module status, failovers

- **Interface**
 - Port Info/Config—Port table, port properties, port statistics
 - PoE—System power status, port table show power usage and LLDP information, PoE statistics by port

- **VLAN**
 - VLAN Management—Primary and management VLAN, VLAN table, VLAN properties

- **Traffic Management**
 - QoS—Type of service, Quality of service, DSCP policies, DSCP priority

- **Spanning Tree**
 - Tree Management—Enabled or disabled

- **Multicast**
 - IGMP—VLAN information

- **Security**
 - Device Passwords—Authorized usernames and passwords
 - Security Wizard—Set up switch to prevent unauthorized access
 - IP Authorization—IP authorized manager addresses, methods, and levels, IP authorization details
 - Port Security—Port security table, security policy information
Using the HP WebAgent

General Features

- Intrusion Log—Details about intrusion events
- SSL—Enabled/disabled for web management; SSL certificate status

Troubleshooting

- Ping/Link Test—Ping test details, link test details
- Configuration Report—Running config file information
- Core dump—Management/Interface modules enabled/disabled, list of core dump files for downloading
- Port Mirroring—Enabled/disabled

Figure 4-1. Example of Status Screen for the WebAgent
Starting the WebAgent

You can start the WebAgent in the following ways:

- Using a standalone web browser on a network connection from a PC or UNIX workstation that is directly connected to your network or connected through remote access to your network
- Using a network management station running PCM+ on your network

Using a Standalone Web Browser from a PC or UNIX Workstation

This procedure assumes that you are using a compatible web browser and that the switch is configured with an IP address accessible from your PC or workstation. (For more on assigning an IP address, refer to “IP Configuration” on page 7-1.)

1. Ensure that the Java™ applets are enabled for your browser. For more information on this topic, refer to your browser's online Help.

2. Use the web browser to access the switch. If your network includes a Domain Name Server (DNS), your switch's IP address may have a name associated with it (for example, switch8212) that you can type in the URL field instead of the IP address. Using DNS names typically improves browser performance. Contact your network administrator to enquire about DNS names associated with your HP switch.

 Type the IP address (or DNS name) of the switch in the browser's URL field and press [Enter]. (It is not necessary to include http://.)

 switch5308 [Enter] (example of a DNS-type name)

 10.11.12.195 [Enter] (example of an IP address)

The Home page of the WebAgent displays in the right pane and a navigation tree displays in the left pane. You can access all the WebAgent features from the navigation tree.
Tasks for Your First WebAgent Session

Viewing the “First Time Install” Window

When you access the WebAgent for the first time, the Alert log contains a “First Time Install” alert. This gives you information about first time installations and provides an immediate opportunity to set passwords for security. You can also specify a fault detection policy, which determines the types of messages that will be displayed in the Alert Log.

To view the Alert Log, click on System in the navigation tree, then click on Logging. Double click on First Time Install in the Alert log. The WebAgent displays the “First Time Install” window. This window is the launching point for setting WebAgent passwords for maintaining security, and also setting a fault detection policy.

You can also use the navigation tree to access these screens:
■ To set WebAgent passwords, select Security > Device Passwords in the navigation tree.
■ To set the fault detection policy, select Security > Intrusion Log in the navigation tree.

Setting a Username and Password

You can set a username in the Username field of the password pane. If you do not want to set a username, then leave the Username field in the password pane blank.

The manager and operator passwords are used to control access to all switch interfaces. The password you enter determines the capability you have during that session:
■ Entering the manager password gives you full read/write/troubleshooting capabilities
■ Entering the operator password gives you read and limited troubleshooting capabilities.

Note that the command prompt and switch console interface use only the password; you are not prompted for the username.
Using the HP WebAgent
Tasks for Your First WebAgent Session

To set the username and password:

1. In the navigation tree, select **Security > Device Passwords**. The Device Passwords screen displays.
2. Click on **Change** on the right side of the screen. The pane expands to allow you to enter information.
3. Enter a username, password, and access level.
4. Click on **Save** to save your entries.

Note

Passwords assigned in the WebAgent will overwrite previous passwords assigned in either the WebAgent, the CLI, or the menu interface. The most recently assigned passwords are the switch's passwords, regardless of which interface was used to assign them.

If You Lose the Password

If you lose the passwords, you can clear them by pressing the **Clear** button on the front of the switch. *This action deletes all password and user name protection from all of the switch's interfaces.*

Figure 4-2. Example of the Device Passwords Screen
Using the HP WebAgent
Connecting to the WebAgent from HP PCM+

The Clear button is provided for your convenience, but its presence means that if you are concerned with the security of the switch configuration and operation, you should make sure the switch is installed in a secure location, such as a locked wiring closet. (For more information, refer to “Front Panel Security” in the chapter titled “Configuring Username and Password Security” in the Access Security Guide for your switch.)

Online Help for the WebAgent

Online Help is available for the WebAgent. You can use it by clicking on the “?” in the upper right corner in any of the WebAgent panes. Context-sensitive help is provided for the pane you are on.

You can access the WebAgent online help at www.hp.com/device_help.

Downloading the WebAgent Help to a Local Server

To download the WebAgent help files to a local server, go to:

www.hp.com/rnd/device_help/download.htm

Follow the directions on the web page to download the WebAgent help for your device.

Connecting to the WebAgent from HP PCM+

To access the WebAgent with HP PCM+:

1. Select the device in the PCM+ navigation tree.
2. Right-click on Device in the navigation tree and select Device Access > Connect to WebAgent.
Using the HP WebAgent
Connecting to the WebAgent from HP PCM+

Figure 4-3. Example of WebAgent Access from PCM+
Switch Memory and Configuration

Overview

This chapter describes:

- How switch memory manages configuration changes
- How the CLI implements configuration changes
- How the menu interface and WebAgent implement configuration changes
- How the switch provides software options through primary/secondary flash images
- How to use the switch’s primary and secondary flash options, including displaying flash information, booting or restarting the switch, and other topics

Configuration File Management

The switch maintains two configuration files, the running-config file and the startup-config file.

Figure 5-1. Conceptual Illustration of Switch Memory Operation
Switch Memory and Configuration
Configuration File Management

- **Running Config File:** Exists in volatile memory and controls switch operation. If no configuration changes have been made in the CLI since the switch was last booted, the running-config file is identical to the startup-config file.

- **Startup-config File:** Exists in flash (non-volatile) memory and is used to preserve the most recently-saved configuration as the “permanent” configuration.

Booting the switch replaces the current running-config file with a new running-config file that is an exact copy of the current startup-config file.

Note

Any of the following actions boots the switch:

- Executing the *boot* or the *reload* command in the CLI
- Executing the *boot* command in the menu interface
- Pressing the Reset button on the front of the switch
- Removing, then restoring power to the switch

For more on reboots and the switch’s dual-flash images, refer to “Using Primary and Secondary Flash Image Options” on page 5-20.

Options for Saving a New Configuration. Making one or more changes to the running-config file creates a new operating configuration. Saving a new configuration means to overwrite (replace) the current startup-config file with the current running-config file. This means that if the switch subsequently reboots for any reason, it will resume operation using the new configuration instead of the configuration previously defined in the startup-config file. There are three ways to save a new configuration:

- **In the CLI:** Use the *write memory* command. This overwrites the current startup-config file with the contents of the current running-config file.

- **In the menu interface:** Use the *Save* command. This overwrites *both* the running-config file and the startup-config file with the changes you have specified in the menu interface screen.

- **In the WebAgent:** Click on *Save*. This overwrites *both* the running-config file and the startup-config file with the changes you have specified in the WebAgent screen.

Note that using the CLI instead of the menu or WebAgent gives you the option of changing the running configuration without affecting the startup configuration. This allows you to test the change without making it “permanent”. When you are satisfied that the change is satisfactory, you can make it permanent by executing the *write memory* command. For example, suppose you use the following command to disable port 5:
HP Switch(config)# interface ethernet 5 disable

The above command disables port 5 in the running-config file, but not in the startup-config file. Port 5 remains disabled only until the switch reboots. If you want port 5 to remain disabled through the next reboot, use write memory to save the current running-config file to the startup-config file in flash memory.

HP Switch(config)# write memory

If you use the CLI to make a configuration change and then change from the CLI to the Menu interface without first using write memory to save the change to the startup-config file, then the switch prompts you to save the change. For example, if you use the CLI to create VLAN 20, and then select the menu interface, VLAN 20 is configured in the running-config file, but not in the startup-config file. In this case you will see:

HP Switch(config)# vlan 20
HP Switch(config)# menu
Do you want to save current configuration [y/n]?

If you type [Y], the switch overwrites the startup-config file with the running-config file, and your configuration change(s) will be preserved across reboots. If you type [N], your configuration change(s) will remain only in the running-config file. In this case, if you do not subsequently save the running-config file, your unsaved configuration changes will be lost if the switch reboots for any reason.

Storing and Retrieving Configuration Files. You can store or retrieve a backup copy of the startup-config file on another device. For more information, see “Transferring Switch Configurations” in Appendix A of the Management and Configuration Guide for your switch.

USB Autorun. This feature supports the ability to auto execute CLI commands stored on a USB flash drive (for example, to configure the switch, update software, retrieve diagnostics, etc.). For more information, see “Using USB to Download Switch Software” in the Management and Configuration Guide for your switch.
Using the CLI To Implement Configuration Changes

The CLI offers these capabilities:

- Access to the full set of switch configuration features
- The option of testing configuration changes before making them permanent

How To Use the CLI To View the Current Configuration Files. Use show commands to view the configuration for individual features, such as port status or Spanning Tree Protocol. However, to view either the entire startup-config file or the entire running-config file, use the following commands:

- `show config` — Displays a listing of the current startup-config file.
- `show running-config` — Displays a listing of the current running-config file.
- `write terminal` — Displays a listing of the current running-config file.
- `show default-config` — Displays a listing of a custom default config file.
- `show config status` — Compares the startup-config file to the running-config file and lists one of the following results:
 - If the two configurations are the same you will see:
 - Running configuration is the same as the startup configuration.
 - If the two configurations are different, you will see:
 - Running configuration has been changed and needs to be saved.

Note

`Show config`, `show running-config`, and `write terminal` commands display the configuration settings that differ from the switch's factory-default configuration.

How To Use the CLI To Reconfigure Switch Features. Use this procedure to permanently change the switch configuration (that is, to enter a change in the startup-config file).

1. Use the appropriate CLI commands to reconfigure the desired switch parameters. This updates the selected parameters in the running-config file.
2. Use the appropriate `show` commands to verify that you have correctly made the desired changes.
3. Observe the switch’s performance with the new parameter settings to verify the effect of your changes.

4. When you are satisfied that you have the correct parameter settings, use the `write memory` command to copy the changes to the startup-config file.

Syntax: write memory

`write memory` saves the running configuration file to the startup-config. The saved configuration becomes the boot-up configuration of the switch on the next boot.

When using redundant management, saves the running configuration of the switch to flash on the active management module. The saved configuration becomes the boot-up configuration of the switch the next time it is booted. The saved configuration file is synced to the standby management module.

Note: If the active management module and the standby management module are running on different operating systems because the boot set-default command was executed and then the standby module was rebooted, the `write memory` command displays this warning: “Warning: The next reboot or failover is set to boot from a different software image. These config changes may be incompatible or not used after a reboot or failover.”

For example, the default port mode setting is `auto`. Suppose that your network uses Cat 3 wiring and you want to connect the switch to another autosensing device capable of 100 Mbps operation. Because 100 Mbps over Cat 3 wiring can introduce transmission problems, the recommended port mode is `auto-10`, which allows the port to negotiate full- or half-duplex, but restricts speed to 10 Mbps. The following command configures port A5 to auto-10 mode in the running-config file, allowing you to observe performance on the link without making the mode change permanent.

```plaintext
HP Switch(config)# interface e a5 speed-duplex auto-10
```

After you are satisfied that the link is operating properly, you can save the change to the switch’s permanent configuration (the startup-config file) by executing the following command:

```plaintext
HP Switch(config)# write memory
```

The new mode (`auto-10`) on port A5 is now saved in the startup-config file, and the startup-config and running-config files are identical. If you subsequently reboot the switch, the `auto-10` mode configuration on port A5 will remain because it is included in the startup-config file.
Switch Memory and Configuration
Using the CLI To Implement Configuration Changes

Note
Beginning with K.15.01.0031, configuration changes to ports may require up to 10 seconds to take effect, especially on switches with high CPU utilization. After a configuration command, perform an appropriate `show` or `show running-config` command to confirm the configuration change. If configuration scripts are used, the script should be modified either to check for successful completion of the previous command before executing the next command, or to sleep for 10 seconds after the configuration command is executed.

How To Cancel Changes You Have Made to the Running-Config File.

If you use the CLI to change parameter settings in the running-config file, and then decide that you don’t want those changes to remain, you can use either of the following methods to remove them:

- Manually enter the earlier values you had for the changed settings. (This is recommended if you want to restore a small number of parameter settings to their previous boot-up values.)
- Update the running-config file to match the startup-config file by rebooting the switch. (This is recommended if you want to restore a larger number of parameter settings to their previous boot-up values.)

If you use the CLI to change a parameter setting, and then execute the `boot` command without first executing the `write memory` command to save the change, the switch prompts you to specify whether to save the changes in the current running-config file. For example:

```
HP Switch(config)# interface e 1 disable
HP Switch(config)# boot
Device will be rebooted, do you want to continue [y/n]? y
Press [Y] to continue the rebooting process.
You will then see this prompt.
Do you want to save current configuration [y/n]?
```

Figure 5-2. Boot Prompt for an Unsaved Configuration

The above prompt means that one or more parameter settings in the running-config file differ from their counterparts in the startup-config file and you need to choose which config file to retain and which to discard.
Switch Memory and Configuration
Using the CLI To Implement Configuration Changes

- If you want to update the startup-config file to match the running-config file, press [Y] for “yes”. (This means that the changes you entered in the running-config file will be saved in the startup-config file.)
- If you want to discard the changes you made to the running-config file so that it will match the startup-config file, then press [N] for “no”. (This means that the switch will discard the changes you entered in the running-config file and will update the running-config file to match the startup-config file.)

Note

If you use the CLI to make a change to the running-config file, you should either use the write memory command or select the save option allowed during a reboot (figure 5-5-2, above) to save the change to the startup-config file. That is, if you use the CLI to change a parameter setting, but then reboot the switch from either the CLI or the menu interface without first executing the write memory command in the CLI, the current startup-config file will replace the running-config file, and any changes in the running-config file will be lost.

Using the Save command in the menu interface does not save a change made to the running-config file by the CLI unless you have also made a configuration change in the menu interface. Also, the menu interface displays the current running-config values. Thus, where a parameter setting is accessible from both the CLI and the menu interface, if you change the setting in the CLI, the new value will appear in the menu interface display for that parameter. However, as indicated above, unless you also make a configuration change in the menu interface, only the write memory command in the CLI will actually save the change to the startup-config file.

How To Reset the startup-config and running-config Files to the Factory Default Configuration. This command reboots the switch, replacing the contents of the current startup-config and running-config files with the factory-default startup configuration.

Syntax: erase startup-config

For example:

```
HP Switch(config)# erase startup-config
Configuration will be deleted and device rebooted, continue [y/n]?
```

Figure 5-3. Example of erase startup-config Command

Press [y] to replace the current configuration with the factory default configuration and reboot the switch. Press [n] to retain the current configuration and prevent a reboot.
Switch Memory and Configuration
Creating a Custom Default Configuration

In a redundant management system, this command erases the startup config file on both the active and the standby management modules as long as redundancy has not been disabled. If the standby management module is not in standby mode or has failed selftest, the startup config file is not erased.

Creating a Custom Default Configuration

Note

This feature is not supported on the HP 3800 switches.

The custom default configuration feature provides the ability to initialize a switch to a different state from the factory default state when you delete the active configuration file. The factory default configuration is not changed. If a custom configuration file has been created and the active configuration file is deleted, the switch will boot up using the custom configuration file.

The feature provides the ability to:

■ Use a customized configuration file as a default configuration file
■ Enable the switch to start up with the specified default configuration

The existence of a custom default configuration file does not affect the results of loading a remotely stored configuration file onto the switch.

Using a custom default configuration, you can configure the features you want to be in the default configuration. When the active configuration is deleted using the `erase startup` command, the active configuration is removed and the custom default configuration file will be used upon bootup. The standard default configuration file remains and is used if there is no custom default configuration.

Note

This feature does not change the system defaults. The custom default configuration file is automatically used when the startup configuration file is erased. It has no effect on what is loaded onto the switch when a remotely stored configuration file is restored.
The default configuration file can be customized using commands at the CLI prompt or by copying a configuration file with the desired configuration using TFTP, USB, or XMODEM copy commands. The existing default configuration file also can be transferred from the switch using these commands.

To start creating the configuration file to be used as the custom default configuration file, enter the commands that configure the features desired and then save the configuration file using the `write memory` command. An example is shown in Figure 5-4.

```
HP Switch(config)# spanning-tree
HP Switch(config)# interface 4 flow-control
HP Switch(config)# write memory
```

Figure 5-4. Example of Creating a Config File with the Desired Features

This configuration, which enables flow control on interface 4, and also spanning-tree on the switch, is stored in the startup configuration file.

To save this configuration as the custom default configuration, the startup configuration file is copied to the default configuration file, as shown in Figure 5-5.

```
HP Switch(config)# copy startup-config default-config
```

Figure 5-5. Example of Copying the Startup Configuration File to the Custom Default Configuration File

Copying an Existing Configuration File to the Custom Default Configuration File

The switch can have up to 3 different configuration files stored in flash memory. (For more information about multiple configuration files, see “Multiple Configuration Files” in the *Management and Configuration Guide* for your switch.) To copy a configuration file that exists in flash memory to the custom default configuration file, use this command.

Syntax:

```
copy config <source-filename> default-config
```

Copies the configuration file specified in `<source-filename>` to the custom default configuration file.
Switch Memory and Configuration
Creating a Custom Default Configuration

Figure 5-6. Copying the abc.cfg Config File to the Custom Default Config File

Copying the Custom Default Config File onto the Switch

Using TFTP

To copy a configuration file stored on a TFTP server to the custom default configuration file, use the `copy tftp default-config` command.

Syntax: `copy tftp default-config <ip-addr> <stored config file name>`

Copies the stored configuration file on the TFTP server specified by `<ip-addr>` to the custom default configuration file.

```
HP Switch(config)# copy abc.cfg default-config
```

Figure 5-7. Copying a Stored Config File to the Default Config File Using TFTP

Using XMODEM

To copy a configuration file to the custom default configuration file using XMODEM, use the `copy xmodem default-config` command.

Syntax: `copy xmodem default-config`

Copies the configuration file specified by the XMODEM server device to the custom default configuration file.

```
HP Switch(config)# copy xmodem default-config
```

Figure 5-8. Copying a Stored Config File to the Custom Default Config File Using XMODEM
Using USB

To copy a configuration file to the custom default configuration file using USB, use the `copy usb default-config` command.

Syntax: `copy usb default-config <stored config file name>`

Copies the stored configuration file on the USB stick to the custom default configuration file.

```
HP Switch# copy usb default-config stored_config.cfg
```

Figure 5-9. Copying a Stored Config File to the Custom Default Config File Using USB

Copying the Custom Default Config File Off the Switch

Using TFTP

To transfer a custom default configuration file off the switch using TFTP, enter the following command.

Syntax: `copy default-config tftp <server ip-address> stored_config.cfg`

Copies the custom default configuration file to the stored_config.cfg file on the TFTP server.

Using XMODEM

To transfer a custom default config file off the switch using XMODEM, enter the following command.

Syntax: `copy default-config xmodem`

Copies the custom default configuration file to the configuration file specified by the XMODEM server device.

Using USB

To transfer a custom default configuration file off the switch using USB, enter the following command.

Syntax: `copy default-config usb stored_config.cfg`
Switch Memory and Configuration
Creating a Custom Default Configuration

Using SFTP and SCP to Transfer the Custom Configuration

While the switch supports an SSH server with SCP and/or SFTP running on it, the switch is not an SCP or SFTP client. To transfer the default custom configuration file to or from the switch, you must connect to the switch's SSH server using any SCP or SFTP client. Instead of the actual name of the custom default configuration file, an alias name of “default-config” is displayed in the file listings and for get/store functions.

When you use an SCP client to connect to the switch, you must know the name of the file you wish to get or store. When you use SFTP client to connect to the switch, you are provided with a list of filenames that can be accessed by the switch.

Note
You must have an SCP/SFTP client implemented in order to execute copy scp or copy sftp commands on the switch.

The following example shows the output from running putty psftp on a remote PC.
Switch Memory and Configuration
Creating a Custom Default Configuration

Erasing a Configuration File

If a custom default configuration file exists and the `erase startup-config` command is executed, the current active configuration is erased and the switch is booted with the custom default configuration.

```
HP Switch(config)# erase startup-config
Configuration will be deleted, and existing login passwords removed, and device rebooted (using the custom default configuration), continue [y/n]?
```

Figure 5-10. Example of Using SFTP

```
C:\PuTTY> psftp 10.1.243.209

We'd like to keep you up to date about:
* Software feature updates
* New product announcements
* Special events

Please register your product at: www.hp.com

Remote working directory is /
psftp> ls
Listing directory /
drwxr-xr-x 2 J9145A J9145A 0 Jan 01 00:01 cfg
drwxr-xr-x 2 J9145A J9145A 0 Jan 01 00:01 core
drwxr-xr-x 2 J9145A J9145A 0 Jan 01 00:01 log
drwxrwxrwxx 2 J9145A J9145A 0 Jan 01 00:01 os
drwxrwxrwxx 3 J9145A J9145A 0 Jan 01 00:01 ssh

psftp> ls /cfg
Listing directory /cfg
-rwxrw-r-- 1 J9145A J9145A 1749 Jan 01 00:01 default-config
-rw-r--r-- 1 J9145A J9145A 745 Jan 01 01:19 running-config
-rwxrw-r-- 1 J9145A J9145A 360 Jan 01 01:19 startup-config
```

Figure 5-11. Example of Erasing the Startup Config File When a Default Custom Config File Exists

If a custom default configuration file does not exist and the `erase startup-config` command is executed, the current active configuration is erased and the switch is booted with the system default configuration.
Switch Memory and Configuration
Creating a Custom Default Configuration

To erase the custom default configuration file, execute the `erase default-config` command.

```
HP Switch(config)# erase default-config
The custom default configuration will be erased. The “erase startup-config”
command will now use system generated default configuration. Continue [y/n]?
```

Figure 5-13. Example of Erasing the Custom Default Config File

The `show config files` command displays the existing configuration files and
indicates that a custom default configuration file exists.

```
HP Switch(config)# show config files
Configuration files:

id | act pri sec | name
---+-------------+-------------------------------
1    *   *      | config
2               | secondaryconfig
3            *  | Kconfig

```

Figure 5-14. Example Output Displaying 3 Configuration Files

Enter the command `show default-config` to display the custom default configuration.

Note

For the 5400zl, 3800, and 8200zl switches, when the `show default-config`
command is executed in enhanced secure mode the following prompt displays:
Switch Memory and Configuration
Creating a Custom Default Configuration

Do you want to show sensitive information (y/n)?
If “Y/y” is entered, the normal command output is displayed on the console.
If “N/n” is entered, all the sensitive information is hidden and will be displayed as asterisks (“*****”). The default option is “N/n” when interactive mode is disabled. For more information, see the chapter “Secure Mode (5400zl, 3800, and 8200zl)” in the Access Security Guide for your switch.

Figure 5-15. Example of Output for Custom Default Configuration File

If a custom default configuration file exists and you erase the current active config file (using the erase startup-config command), then issue the show running-config command, the output will display the contents of the custom default configuration file. The custom default configuration file is loaded upon bootup. See Figure 5-16.
Switch Memory and Configuration
Using the Menu and WebAgent To Implement Configuration Changes

Figure 5-16. Example of Output of Custom Default Config File When Current Active Config File Erased

Troubleshooting Custom Default Configuration Files

- If the switch won't boot because of a problem with the custom default configuration file, the file can be removed using the ROM mode interface.
- The custom default configuration file cannot be erased using the front panel buttons on the switch. If the switch can be booted, use the `erase default-config` command to remove the custom default configuration file.

Using the Menu and WebAgent To Implement Configuration Changes

The menu and WebAgent offer these advantages:
- Quick, easy menu or window access to a subset of switch configuration features
Switch Memory and Configuration
Using the Menu and WebAgent To Implement Configuration Changes

- Viewing several related configuration parameters in the same screen, with their default and current settings
- Immediately changing both the running-config file and the startup-config file with a single command

Menu: Implementing Configuration Changes

You can use the menu interface to simultaneously save and implement a subset of switch configuration changes without having to reboot the switch. That is, when you save a configuration change in the menu interface, you simultaneously change both the running-config file and the startup-config file.

Note
The only exception to this operation are two VLAN-related parameter changes that require a reboot—described under “Rebooting To Activate Configuration Changes” on page 5-19.

Using Save and Cancel in the Menu Interface

For any configuration screen in the menu interface, the Save command:

1. Implements the changes in the running-config file
2. Saves your changes to the startup-config file

If you decide not to save and implement the changes in the screen, select Cancel to discard them and continue switch operation with the current operation. For example, suppose you have made the changes shown below in the System Information screen:

Figure 5-17. Example of Pending Configuration Changes You Can Save or Cancel
Switch Memory and Configuration
Using the Menu and WebAgent To Implement Configuration Changes

Note
If you reconfigure a parameter in the CLI and then go to the menu interface without executing a `write memory` command, those changes are stored only in the running configuration (even if you execute a Save operation in the menu interface). If you then execute a switch `boot` command in the menu interface, the switch discards the configuration changes made while using the CLI. To ensure that changes made while using the CLI are saved, execute `write memory` in the CLI before rebooting the switch.

Rebooting from the Menu Interface

- Terminates the current session and performs a reset of the operating system
- Activates any configuration changes that require a reboot
- Resets statistical counters to zero

To Reboot the switch, use the **Reboot Switch** option in the Main Menu. (Note that the Reboot Switch option is not available if you log on in Operator mode; that is, if you enter an Operator password instead of a manager password at the password prompt.)

![Figure 5-18. The Reboot Switch Option in the Main Menu](image-url)
Switch Memory and Configuration
Using the Menu and WebAgent To Implement Configuration Changes

Rebooting To Activate Configuration Changes. Configuration changes for most parameters become effective as soon as you save them. However, you must reboot the switch in order to implement a change in the **Maximum VLANs to support** parameter.

(To access these parameters, go to the Main menu and select 2. Switch Configuration, then 8. VLAN Menu, then 1. VLAN Support.)

If configuration changes requiring a reboot have been made, the switch displays an asterisk (*) next to the menu item in which the change has been made. For example, if you change and save parameter values for the **Maximum VLANs to support** parameter, an asterisk appears next to the **VLAN Support** entry in the VLAN Menu screen, and also next to the **Switch Configuration** entry in the Main menu, as shown in Figure 5-19:

![Figure 5-19. Indication of a Configuration Change Requiring a Reboot](image)

WebAgent: Implementing Configuration Changes

You can use the WebAgent to simultaneously save and implement a subset of switch configuration changes without having to reboot the switch. That is, when you save a configuration change, you simultaneously change both the running-config file and the startup-config file. For online help with configuring changes in the WebAgent, click on the “?” in the WebAgent screen.

If you reconfigure a parameter in the CLI and then go to the WebAgent without executing a **write memory** command, those changes will be saved to the startup-config file if you click on **Save** in the WebAgent.

Note
Using Primary and Secondary Flash Image Options

The switches covered in this guide feature two flash memory locations for storing switch software image files:

- **Primary Flash**: The default storage for a switch software image.
- **Secondary Flash**: The additional storage for either a redundant or an alternate switch software image.

With the Primary/Secondary flash option you can test a new image in your system without having to replace a previously existing image. You can also use the image options for troubleshooting. For example, you can copy a problem image into Secondary flash for later analysis and place another, proven image in Primary flash to run your system. The switch can use only one image at a time.

The following tasks involve primary/secondary flash options:

- Displaying the current flash image data and determining which switch software versions are available
- Switch software downloads
- Replacing and removing (erasing) a local switch software version
- System booting

Displaying the Current Flash Image Data

Use the commands in this section to:

- Determine whether there are flash images in both primary and secondary flash
- Determine whether the images in primary and secondary flash are the same
- Identify which switch software version is currently running

Viewing the Currently Active Flash Image Version. This command identifies the software version on which the switch is currently running, and whether the active version was booted from the primary or secondary flash image.

Syntax: show version
For example, if the switch is using a software version of K.12.XX stored in Primary flash, `show version` produces the following:

```
HP Switch(config)# show version
Image stamp: /su/code/build/info(s01)
Dec 01 2006 10:50:26
K.12.XX
1223
Boot Image: Primary
```

Figure 5-20. Example Showing the Identity of the Current Flash Image

Determining Whether the Flash Images Are Different Versions.

If the flash image sizes in primary and secondary are the same, then in almost every case, the primary and secondary images are identical. This command provides a comparison of flash image sizes, plus the boot ROM version and from which flash image the switch booted. For example, in the following case, the images are different versions of the switch software, and the switch is running on the version stored in the secondary flash image:

```
HP Switch(config)# show flash
Image Size(Bytes) Date   Version
----- ---------- -------- -------------
Primary Image : 7493854 03/21/10 K.15.01.0001
Secondary Image : 7463821 03/23/10 K.15.01.0001
Boot Rom Version: K.15.08
Default Boot : Primary
```

Figure 5-21. Example Showing Different Flash Image Versions

Determining Which Flash Image Versions Are Installed.

The `show version` command displays which software version the switch is currently running and whether that version booted from primary or secondary flash. Thus, if the switch booted from primary flash, you will see the version number of the software version stored in primary flash, and if the switch booted from secondary flash, you will see the version number of the software version stored in secondary flash. Thus, by using `show version`, then rebooting the switch from the opposite flash image and using `show version` again, you can determine the version(s) of switch software in both flash sources. For example:
Switch Memory and Configuration
Using Primary and Secondary Flash Image Options

Figure 5-22. Determining the Software Version in Primary and Secondary Flash

HP Switch(config)# show version
Management Module 1: Active
Image stamp: /sw/code/build/btm(ec_K_15)
Aug 2 2011 09:06:58
K.15.06.00002
152
Boot Image: Primary

HP Switch(config)# boot system flash secondary
Device will be rebooted, do you want to continue [y/n]? y
.
.
HP Switch(config)# show version
Management Module 1: Active
Image stamp: /sw/code/build/btm(ec_K_15)
Aug 2 2011 09:06:58
K.15.06.00001
1753
Boot Image: Secondary

1. In this example show version indicates the switch has version K.15.06.00002 in primary flash.
2. After the boot system command, show version indicates that version K.15.06.00001 is in secondary flash.

Switch Software Downloads

The following table shows the switch’s options for downloading a software version to flash and booting the switch from flash

Table 5-1. Primary/Secondary Memory Access

<table>
<thead>
<tr>
<th>Action</th>
<th>Menu</th>
<th>CLI</th>
<th>Web Agent</th>
<th>SNMP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Download to Primary</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Download to Secondary</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Boot from Primary</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Boot from Secondary</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
</tr>
</tbody>
</table>

The different software download options involve different copy commands, plus xmodem, usb, and tftp. These topics are covered in Appendix A, “File Transfers”.

Download Interruptions. In most cases, if a power failure or other cause interrupts a flash image download, the switch reboots with the image previously stored in primary flash. In the unlikely event that the primary image is
corrupted, as a result of an interruption, the switch will reboot from secondary flash and you can either copy the secondary image into primary or download another image to primary from an external source.

Local Switch Software Replacement and Removal

This section describes commands for erasing a software version and copying an existing software version between primary and secondary flash.

Note

It is not necessary to erase the content of a flash location before downloading another software file. The process automatically overwrites the previous file with the new file. If you want to remove an unwanted software version from flash, HP recommends that you do so by overwriting it with the same software version that you are using to operate the switch, or with another acceptable software version. To copy a software file between the primary and secondary flash locations, refer to “Copying a Switch Software Image from One Flash Location to Another”, below.

The local commands described here are for flash image management within the switch. To download a software image file from an external source, see “File Transfers” in the Management and Configuration Guide for your switch.

Copying a Switch Software Image from One Flash Location to Another. When you copy the flash image from primary to secondary or the reverse, the switch overwrites the file in the destination location with a copy of the file from the source location. This means you do not have to erase the current image at the destination location before copying in a new image.

Caution

Verify that there is an acceptable software version in the source flash location from which you are going to copy. Use the show flash command or, if necessary, the procedure under “Determining Which Flash Image Versions Are Installed” on page 5-21 to verify an acceptable software version. Attempting to copy from a source image location that has a corrupted flash image overwrites the image in the destination flash location. In this case, the switch will not have a valid flash image in either flash location, but will continue running on a temporary flash image in RAM. Do not reboot the switch. Instead, immediately download another valid flash image to primary or secondary flash. Otherwise, if the switch is rebooted without a software image in either primary or secondary flash, the temporary flash image in RAM will be cleared and the switch will go down. To recover, see “Restoring a Flash Image” in Appendix C of the Management and Configuration Guide for your switch.
Switch Memory and Configuration
Using Primary and Secondary Flash Image Options

Syntax:

```
copy flash flash <destination flash>
```

where: destination flash = primary or secondary:

For example, to copy the image in secondary flash to primary flash:

1. Verify that there is a valid flash image in the secondary flash location. The following figure indicates that a software image is present in secondary flash. (If you are unsure whether the image is secondary flash is valid, try booting from it before you proceed, by using boot system flash secondary.)

```
HP Switch(config)# copy flash flash primary
```

Erasing the Contents of Primary or Secondary Flash. This command deletes the software image file from the specified flash location.

Caution:

No Undo!

Before using this command in one flash image location (primary or secondary), ensure that you have a valid software file in the other flash image location (secondary or primary). If the switch has only one flash image loaded (in either primary or secondary flash) and you erase that image, then the switch does not have a software image stored in flash. In this case, if you do not reboot or power cycle the switch, you can recover by using xmodem or tftp to download another software image.

Syntax:

```
erase flash < primary | secondary >
```

For example, to erase the software image in primary flash, do the following:

1. First verify that a usable flash image exists in secondary flash. The most reliable way to ensure this is to reboot the switch from the flash image you want to retain. For example, if you are planning to erase the primary image, then first reboot from the secondary image to verify that the secondary image is present and acceptable for your system:
Switch Memory and Configuration
Using Primary and Secondary Flash Image Options

HP Switch# boot system flash secondary
2. Then erase the software image in the selected flash (in this case, primary):

 HP Switch# erase flash primary
 The Primary OS Image will be deleted, continue [y/n]?

 Figure 5-24. Example of Erase Flash Prompt

3. Type y at the prompt to complete the flash erase.
4. Use show flash to verify erasure of the selected software flash image.

 HP Switch# show flash
 Compressed Primary Code size = 0
 Compressed Secondary code size = 2555802
 Boot ROM Version : K.15.19
 Default Boot : Secondary

 Figure 5-25. Example of Show Flash Listing After Erasing Primary Flash

In redundant management systems, this command will erase the selected flash in both the active and the standby management modules. If redundancy has been disabled or the standby module has failed selftest, this command only affects the active management module.

Zeroizing the File Storage of the Management Module

Sometimes it is desirable to completely remove the information stored in user files from flash storage. The zeroization feature will remove and "zeroize" all the files from flash storage except software images. Information removed includes the following:

- switch configurations
- system generated private keys
- user installed private keys
- legacy manager/operator password files
- crypto-key files
- fdr logs
- core dumps
Switch Memory and Configuration
Using Primary and Secondary Flash Image Options

Zeroization can be initiated in these ways:

- CLI command
- During Secure Mode transition, initiated through the `secure-mode` CLI command executed in a serial session
- ROM console command

The zeroization process takes some time, so it is performed during the init process of a switch reboot. After zeroization, the configuration file is rebuilt from the default config file, which is similar to the config rebuilding process performed by the `erase startup-config` command.

Syntax:

```
erase all [zeroize]
```

Erases all management module files, including configuration files, core dumps, password files, crypto-key files, etc. Software images are not erased.

When executed without the `zeroize` option, files are removed, but the flash storage is not zeroized. The data is still physically present in the flash. The flash can be removed from the switch and the data recovered with file recovery tools.

```
[zeroize]: Zeroizes the file storage of the management modules.
```

Note

It is recommended that zeroization be performed from the serial console so that the status information can be viewed during the zeroization process.

```
HP Switch(config)# erase all zeroize
```

The system will be rebooted and all management module files except software images will be erased and zeroized. This will take up to 60 minutes and the switch will not be usable during that time. Continue (y/n)? y

Figure 5-26. Zeroizing the Management Module Files

Zeroizing from the ROM Console

It is also possible to zeroize the file storage from the ROM console of the switch, using the `erase-all zeroize` command at the prompt. This most likely occurs during a switch recovery process. The warning messages are the same as for the CLI command.
Switch Memory and Configuration
Using Primary and Secondary Flash Image Options

Zeroizing with HA

When zeroization is triggered by a secure mode transition, HA handles zeroization on the AMM and SMM automatically.

When the CLI command (erase all zeroize) is used to start zeroization, the AMM syncs with the SMM and ensures that the SMM performs the same level of zeroization before the AMM starts the zeroization process on itself. The AMM before the zeroization process occurs remains the AMM, unless it takes over a minute for the AMM to boot up, in which case the prior SMM becomes the AMM.

When zeroization is started from the ROM console, there is no synchronization performed between the AMM and SMM, as zeroization from the ROM console is treated as a recovery facility. Each MM has to be zeroized individually.

For information about Secure Mode and zeroization, see the chapter “Secure Mode (5400zl, 3800, and 8200zl)” in the Access Security Guide for your switch.

Rebooting the Switch

Operating Notes about Booting

Default Boot Source. The switch reboots from primary flash by default unless you specify the secondary flash by entering either the `boot system flash [primary | secondary]` or `boot set-default flash [primary | secondary]` command. Both the `boot` command and the `reload` command will reboot based on how these options have been selected.

Boot Attempts from an Empty Flash Location. In this case, the switch aborts the attempt and displays

```
Image does not exist
Operation aborted.
```
Interaction of Primary and Secondary Flash Images with the Current Configuration. The switch has one startup-config file (page 5-1), which it always uses for reboots, regardless of whether the reboot is from primary or secondary flash. Also, for rebooting purposes, it is not necessary for the software image and the startup-config file to support identical software features. For example, suppose you have just downloaded a software upgrade that includes new features that are not supported in the software you used to create the current startup-config file. In this case, the software simply assigns factory-default values to the parameters controlling the new features. Similarly, if you create a startup-config file while using a version “Y” of the switch software, and then reboot the switch with an earlier software version “X” that does not include all of the features found in “Y”, the software simply ignores the parameters for any features that it does not support.

Scheduled Reload. If no parameters are entered after the reload command, an immediate reboot is executed. The reload at and reload after command information is not saved across reboots. If the switch is rebooted before a scheduled reload command is executed, the command is effectively cancelled. When entering a reload at or reload after command, a prompt will appear to confirm the command before it can be processed by the switch. For the reload at command, if mm/dd/yy are left blank, the current day is assumed.

The scheduled reload feature removes the requirement to physically reboot the switch at inconvenient times (for example, at 1:00 in the morning). Instead, a reload at 1:00 mm/dd command can be executed (where mm/dd is the date the switch is scheduled to reboot).

Boot and Reload Command Comparison

The switch offers reboot options through the boot and reload commands, plus the options inherent in a dual-flash image system. Generally, using boot provides more comprehensive self-testing; using reload gives you a faster reboot time.
Switch Memory and Configuration
Using Primary and Secondary Flash Image Options

Table 5-2. Comparing the Boot and Reload Commands

<table>
<thead>
<tr>
<th>Actions</th>
<th>Included In Boot?</th>
<th>Included In Reload</th>
<th>Note</th>
</tr>
</thead>
<tbody>
<tr>
<td>Save all configuration changes since the last boot or reload</td>
<td>Optional, with prompt</td>
<td>Optional with reload <cr>, when prompt displays. Not saved with reload at/after commands; No prompt is displayed.</td>
<td>Config changes saved to the startup-config file if “y” is selected (reload command).</td>
</tr>
<tr>
<td>Perform all system self-tests</td>
<td>Yes</td>
<td>No</td>
<td>The reload command provides a faster system reboot.</td>
</tr>
<tr>
<td>Choice of primary or secondary flash image</td>
<td>Yes</td>
<td>No—Uses the current flash image.</td>
<td>Use the reload command with after/at parameters (see page 5-33 for details).</td>
</tr>
<tr>
<td>Perform a scheduled reboot</td>
<td>No</td>
<td>Yes</td>
<td></td>
</tr>
</tbody>
</table>

Setting the Default Flash

You can specify the default flash to boot from on the next boot by entering the boot set-default flash command.

Syntax: boot set-default flash [primary | secondary]

Upon booting, set the default flash for the next boot to primary or secondary.

```plaintext
HP Switch(config)# boot set-default flash secondary
HP Switch(config)# show flash
Image           Size(Bytes)   Date   Version
-----           ----------  -------- --------------
Primary Image   : 7476770   03/15/10 K.15.01.0001
Secondary Image : 7476770   03/15/10 K.15.01.0001
Boot Rom Version: K.15.08
Default Boot    : Secondary
```

Figure 5-28. Example of boot set-default Command with Default Flash Set to Secondary (with a Redundant Management Module Present)
Switch Memory and Configuration
Using Primary and Secondary Flash Image Options

Booting from the Default Flash (Primary or Secondary)

The `boot` command boots the switch from the flash image that you are currently booted on, or the flash image that was set either by the `boot set-default` command or by the last executed `boot system flash <primary | secondary>` command. This command also executes the complete set of subsystem self-tests. You have the option of specifying a configuration file.

Syntax:
```
boot [system [flash <primary | secondary>]] [config FILENAME]
```
Reboots the switch from the flash that you are currently booted on (primary or secondary). You can select which image to boot from during the boot process itself. When using redundant management, the switch will failover to the standby management module.

Note: This is changed from always booting from primary flash. You are prompted with a message which will indicate the flash being booted from.

- `system`: Boots the switch. You can specify the flash image to boot from. When using redundant management, boots both the active and standby management modules.
- `config`: You can optionally select a configuration file from which to boot.

```
HP Switch(config)# boot
This management module will now reboot from primary image and will become the standby module! You will need to use the other management module's console interface. Do you want to continue [y/n]? y
Do you want to save current configuration [y/n]? n
```

Figure 5-29. Example of Boot Command (Default Primary Flash) with Redundant Management

In the above example, typing either a `y` or `n` at the second prompt initiates the reboot operation. (Entering `y` saves any configuration changes from the running-config file to the startup-config file; entering `n` discards them.)
Switch Memory and Configuration
Using Primary and Secondary Flash Image Options

Booting from a Specified Flash

This version of the boot command gives you the option of specifying whether to reboot from primary or secondary flash, and is the required command for rebooting from secondary flash. This option also executes the complete set of subsystem self-tests.

Syntax: boot system flash < primary | secondary >

For example, to reboot the switch from secondary flash when there are no pending configuration changes in the running-config file:

```
HP Switch(config)# boot system flash secondary
System will be rebooted from secondary image. Do you want to continue [y/n]? y
```

Figure 5-31. Example of Boot Command with Secondary Flash Option

In the above example, typing either a y or n at the second prompt initiates the reboot operation.
Switch Memory and Configuration
Using Primary and Secondary Flash Image Options

Using the Fastboot feature. The fastboot command allows a boot sequence that skips the internal power-on self-tests, resulting in a faster boot time. When using redundant management and fastboot is enabled, it is saved to the standby management module when the config files are synchronized. Fastboot is used during the next bootup on either management module.

Syntax:
```plaintext
[no] fastboot
```

Enables the fastboot option

The no option disables the feature.

Syntax:
```plaintext
show fastboot
```

Shows the status of the fastboot feature, either enabled or disabled.

The fastboot command is shown below.

HP Switch(config)# fastboot

Using Reload

The **Reload** command reboots the switch from the flash image that you are currently booted on (primary or secondary) or the flash image that was set either by the `boot set-default` command or by the last executed `boot system flash <primary | secondary>` command. Because reload bypasses some subsystem self-tests, the switch reboots faster than if you use either of the `boot` command options. If you are using redundant management and redundancy is enabled, the switch will failover to the other management module.

Syntax:
```plaintext
reload
```

For example, if you change the number of VLANs the switch supports, you must reboot the switch in order to implement the change. The `reload` command prompts you to save or discard the configuration changes.

```
HP Switch(config)# max-vlans 12
Command will take effect after saving configuration and reboot.

HP Switch(config)# reload
This command will cause a switchover to the other management module which may not be running the same software image and configurations.
Do you want to continue [y/n]? y
```

Figure 5-32. Using Reload with Redundant Management and Pending Configuration Changes
Scheduled Reload. Beginning with software release K.11.34, additional parameters have been added to the `reload` command to allow for a scheduled reboot of the switch via the CLI.

Syntax:
```
[no] reload [after <[dd:]hh:mm> | at <hh:mm[:ss]> [<mm/dd[/yyyy>]]]
```

Enables a scheduled warm reboot of the switch. The switch boots up with the same startup config file and using the same flash image as before the reload.

Caution: When using redundant management, the `reload at/after` command causes a switchover at the scheduled time to the other management module, which may not be running the same software image or have the same configurations.

Parameters include:
- `after`: Schedules a warm reboot of the switch after a given amount of time has passed.
- `at`: Schedules a warm reboot of the switch at a given time.

The **no** form of the command removes a pending reboot request. For more details and examples, see below.

The scheduled reload feature removes the requirement to physically reboot the switch at inconvenient times (for example, at 1:00 in the morning). Instead, a `reload at 1:00 mm/dd` command can be executed (where `mm/dd` is the date the switch is scheduled to reboot).

Note
Configuration changes are not saved with `reload at` or `reload after` commands. No prompt to save configuration file changes is displayed. See Table 5-2 on page 5-29.

Examples of scheduled *reload* commands:
- To schedule a reload in 15 minutes:
  ```
  HP Switch# reload after 15
  ```
- To schedule a reload in 3 hours:
  ```
  HP Switch# reload after 03:00
  ```
- To schedule a reload for the same time the following day:
  ```
  HP Switch# reload after 01:00:00
  ```
- To schedule a reload for the same day at 12:05:
  ```
  HP Switch# reload at 12:05
  ```
- To schedule a reload on some future date:
  ```
  HP Switch# reload at 12:05 01/01/2008
  ```
Switch Memory and Configuration
Using Primary and Secondary Flash Image Options

Figure 5-33. An Example of the reload Command with a Redundant Management System

Module Reload.

The module reload feature allows you to reset a module by initiating a warm reboot of a specified module or modules. This saves time over rebooting the entire switch, which can take several minutes to complete and disrupts all users on the switch. The specified module has its power turned off, and then turned on again. This causes the module to reset to a known good state and reload its software.

Syntax:

no reload [[after < [[DD:] HH:]] MM> | [at HH:MM [:SS] [MM/DD/[YY]YY]] | [module <slot-id range>]]

When specified with the module parameter, initiates a reload of the module in the specified slot or slots by turning the slot power off, then on again. A valid slot or range of slots must be specified. The at and after parameters are not allowed with the module option. The no version of the command is not valid with the module option.

When the reload command is executed without any parameters, an immediate switch reload occurs.

Note: This feature is not supported for HP One modules.

module: Powers the module on or off, forcing a software reload of the specified module or modules.

Figure 5-34. Example of Reloading a Specified Module

HP Switch(config)# reload module C
The 'reload module' command will shutdown the specified modules. Ports on specified modules will no longer pass traffic. Any management traffic to the switch which passes through the affected modules will be interrupted (e.g. ssh, telnet, snmp). This command may take up to 2 minutes to power down all specified modules. Please check the event log for current status of module power down, power up cycle. Continue [y/n]?
Switch Memory and Configuration
Using Primary and Secondary Flash Image Options

Displaying Reload Information.

Use the `show reload` command to display the reload information. This can include:

- A scheduled, pending reload of the entire switch
- A statement that no reload is scheduled
- The time of the last reload of each module on the system

```
HP Switch(config)# reload at 23:45
Reload scheduled at 23:45:47 6/16/2010
(in 0 days, 1 hours, 41 minutes)

HP Switch(config)# show reload at
Reload scheduled for 23:45:47 06/16/2010
(in 0 days, 1 hours, 40 minutes)

HP Switch(config)# show reload after
Reload scheduled for 23:45:47 6/16/2010
(in 0 days, 1 hours, 40 minutes)
```

Figure 5-35. Example of the Scheduled Reload At Information

```
HP Switch(config)# reload after 35
Reload scheduled in 0 days, 0 hours, 35 minutes

HP Switch(config)# show reload at
Reload scheduled in 0 days, 0 hours, 34 minutes

HP Switch(config)# show reload after
Reload scheduled in 0 days, 0 hours, 34 minutes
```

Figure 5-36. Example of the Scheduled Reload After Information

```
HP Switch(config)# show reload module
Module Reload information:

Module | Last reload date
--------+-------------------
C      | 10:50:51 01/13/2010
```

Figure 5-37. Example of the Module Reload Information
Multiple Configuration Files

This method of operation means that you cannot preserve different startup-config files across a reboot without using remote storage.

The switch allows up to three startup-config files with options for selecting which startup-config file to use for:

- A fixed reboot policy using a specific startup-config file for a specific boot path (primary or secondary flash)
- Overriding the current reboot policy on a per-instance basis

Figure 5-38. Optional Reboot Process

While you can still use remote storage for startup-config files, you can now maintain multiple startup-config files on the switch and choose which version to use for a reboot policy or an individual reboot.

This choice of which configuration file to use for the startup-config at reboot provides the following new options:

- The switch can reboot with different configuration options without having to exchange one configuration file for another from a remote storage location.
Switch Memory and Configuration
Multiple Configuration Files

- Transitions from one software release to another can be performed while maintaining a separate configuration for the different software release versions.
- By setting a reboot policy using a known good configuration and then overriding the policy on a per-instance basis, you can test a new configuration with the provision that if an unattended reboot occurs, the switch will come up with the known, good configuration instead of repeating a reboot with a misconfiguration.

General Operation

Multiple Configuration Storage in the Switch. The switch uses three memory “slots”, with identity (id) numbers of 1, 2, and 3.

```
Memory Slots for Different Startup-Config Files
```

![Figure 5-39. Example of Output for show config files Command](image)

A startup-config file stored in a memory slot has a unique, changeable file name. The switches covered in this guide can use the startup-config in any of the memory slots (if the software version supports the configured features).

Boot Options. With multiple startup-config files in the switch you can specify a policy for the switch to use upon reboot. The options include:

- Use the designated startup-config file with either or both reboot paths (primary or secondary flash)
- Override the current reboot policy for one reboot instance by specifying a boot path (primary or secondary flash) and the startup-config file to use.

Changing the Startup-Config File. When the switch reboots, the startup-config file supplies the configuration for the running-config file the switch uses to operate. Making changes to the running-config file and then executing a `write-mem` command (or, in the Menu interface, the `Save` command) are written back to the startup-config file used at the last reboot. For example, suppose that a system administrator performs the following on a switch that has two startup-config files (`workingConfig` and `backupConfig`):
Switch Memory and Configuration
Multiple Configuration Files

1. Reboot the switch through the Primary boot path using the startup-config file named `backupConfig`.
2. Use the CLI to make configuration changes in the running-config file, and then execute `write mem`.

The result is that the startup-config file used to reboot the switch is modified by the actions in step 2.

![Diagram of Boot Process and Configuration Changes]

Figure 5-40. Example of Reboot Process and Making Changes to the Startup-Config File

Creating an Alternate Startup-Config File. There are two methods for creating a new configuration file:

- Copy an existing startup-config file to a new filename, then reboot the switch, make the desired changes to the running-config file, then execute `write memory`. (Refer to figure 5-40, above.)
- Erase the active startup-config file. This generates a new, default startup-config file that always results when the switch automatically reboots after deletion of the currently active startup-config file. (Refer to “Erasing a Startup-Config File” on page 5-45.)
Transitioning to Multiple Configuration Files

At the first reboot with a software release supporting multiple configuration, the switch:

- Assigns the filename `oldConfig` to the existing startup-config file (which is stored in memory slot 1).
- Saves a copy of the existing startup-config file in memory slot 2 with the filename `workingConfig`.
- Assigns the `workingConfig` file as the active configuration and the default configuration for all subsequent reboots using either primary or secondary flash.

```
HP Switch(config)# show config files
Configuration files:
  id | act pri sec | name
  ---+-------------+----------------------------------------
  1 |             | oldConfig
  2 |  *   *   *  | workingConfig
  3 |             |
```

Figure 5-41. Switch Memory Assignments After the First Reboot from Software Supporting Multiple Configuration

In the above state, the switch always:

- Uses the `workingConfig` file to reboot

The commands described later in this section enable you to view the current multiple configuration status, manage multiple startup-config files, configure reboot policies, and override reboot policies on a per-instance basis.
Switch Memory and Configuration
Multiple Configuration Files

Listing and Displaying Startup-Config Files

<table>
<thead>
<tr>
<th>Command</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>show config files</td>
<td>Below</td>
</tr>
<tr>
<td>show config < filename ></td>
<td>5-41</td>
</tr>
</tbody>
</table>

Viewing the Startup-Config File Status with Multiple Configuration Enabled

Rebooting the switch automatically enables the multiple configuration feature.

Syntax: show config files

This command displays the available startup-config files on the switch and the current use of each file.

id: Identifies the memory slot for each startup-config file available on the switch.

act: An asterisk (*) in this column indicates that the corresponding startup-config file is currently in use.

pri: An asterisk (*) in this column indicates that the corresponding startup-config file is currently assigned to the primary boot path.

sec: An asterisk (*) in this column indicates that the corresponding startup-config file is currently assigned to the secondary boot path.

name: Shows the filename for each listed startup-config file in the switch. Refer to “Renaming an Existing Startup-Config File” on page 5-44 for the command you can use to change existing startup-config filenames.

In the default configuration, if the switch was shipped from the factory with software installed in both the primary and secondary boot paths, then one startup-config file named **config1** is used for both paths and is stored in memory slot 1. Memory slots 2 and 3 are empty in this default configuration.
Displaying the Content of A Specific Startup-Config File

With Multiple Configuration enabled, the switch can have up to three startup-config files. Because the `show config` command always displays the content of the currently active startup-config file, the command extension shown below is needed to allow viewing the contents of any other startup-config files stored in the switch.

Syntax:
```
show config < filename >
```

This command displays the content of the specified startup-config file in the same way that the `show config` command displays the content of the default (currently active) startup-config file.

Changing or Overriding the Reboot Configuration Policy

You can boot the switch using any available startup-config file.

Changing the Reboot Configuration Policy. For a given reboot, the switch automatically reboots from the startup-config file assigned to the flash location (primary or secondary) being used for the current reboot. For example, when you first download a software version that supports multiple configuration files and boot from the flash location of this version, the switch copies the existing startup-config file (named `oldConfig`) into memory slot 2, renames this file to `workingConfig`, and assigns `workingConfig` as:

- The active configuration file
- The configuration file to use when booting from either primary or secondary flash.

In this case, the switch is configured to automatically use the `workingConfig` file in memory slot 2 for all reboots.

You can use the following command to change the current policy so that the switch automatically boots using a different startup-config file.

Command

<table>
<thead>
<tr>
<th>Command</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>startup-default { primary</td>
<td>secondary }</td>
</tr>
<tr>
<td>boot system flash { primary</td>
<td>secondary }</td>
</tr>
</tbody>
</table>
Switch Memory and Configuration
Multiple Configuration Files

Syntax:
startup-default [primary | secondary] config < filename >

Specifies a boot configuration policy option:

[primary | secondary] config < filename >: Designates the startup-config file to use in a reboot with the software version stored in a specific flash location. Use this option to change the reboot policy for either primary or secondary flash, or both.

config < filename >: Designates the startup-config file to use for all reboots, regardless of the flash version used. Use this option when you want to automatically use the same startup-config file for all reboots, regardless of the flash source used.

For redundant management systems, this command affects both the active management module and the standby management module. The config file is copied immediately to the standby management module and becomes the default on that module when the next bootup occurs, unless redundancy is disabled or the standby module has failed selftest.

Note: To override the current reboot configuration policy for a single reboot instance, use the `boot system flash` command with the options described under “Overriding the Default Reboot Configuration Policy” on page 5-43.

For example, suppose:

- Software release “A” is stored in primary flash and a later software release is stored in secondary flash.
- The system operator is using memory slot 1 for a reliable, minimal configuration (named `minconfig`) for the software version in the primary flash, and slot 2 for a modified startup-config file (named `newconfig`) that includes untested changes for improved network operation with the software version in secondary flash.

The operator wants to ensure that in case of a need to reboot by pressing the Reset button, or if a power failure occurs, the switch will automatically reboot with the minimal startup-config file in memory slot 1. Since a reboot due to pressing the Reset button or to a power cycle always uses the software version in primary flash, the operator needs to configure the switch to always boot from primary flash with the startup-config file named `minconfig` (in memory slot 1). Also, whenever the switch boots from secondary flash, the operator also wants the startup-config named `newconfig` to be used. The following two commands configure the desired behavior.
Switch Memory and Configuration
Multiple Configuration Files

HP Switch(config)# startup-default pri config minconfig
HP Switch(config) # startup-default sec config newconfig.

Overriding the Default Reboot Configuration Policy. This command provides a method for manually rebooting with a specific startup-config file other than the file specified in the default reboot configuration policy.

Syntax: boot system flash < primary | secondary > config < filename >
Specifies the name of the startup-config file to apply for the immediate boot instance only. This command overrides the current reboot policy.

Using Reload To Reboot From the Current Flash Image and Startup-Config File.

Syntax: reload
This command boots the switch from the currently active flash image and startup-config file. Because reload bypasses some subsystem self-tests, the switch boots faster than if you use a boot command.
Note: To identify the currently active startup-config file, use the show config files command.

Managing Startup-Config Files in the Switch

<table>
<thead>
<tr>
<th>Command</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>rename config < current-filename > < newname-str ></td>
<td>5-44</td>
</tr>
<tr>
<td>copy config < source-filename > config < dest-filename ></td>
<td>5-44</td>
</tr>
<tr>
<td>erase config < filename ></td>
<td>startup-config</td>
</tr>
<tr>
<td>Erase startup-config using the front-panel Clear + Reset Buttons</td>
<td>5-47</td>
</tr>
</tbody>
</table>
Switch Memory and Configuration
Multiple Configuration Files

Renaming an Existing Startup-Config File

Syntax: rename config < current-filename > < newname-str >

This command changes the name of an existing startup-config file. A file name can include up to 63, alphanumeric characters. Blanks are allowed in a file name enclosed in quotes (" " or ' '). (File names are not case-sensitive.) For redundant management systems, renaming a config file affects both the active management module and the standby management module, unless redundancy is disabled or the standby module failed selftest.

Creating a New Startup-Config File

The switch allows up to three startup-config files. You can create a new startup-config file if there is an empty memory slot or if you want to replace one startup-config file with another.

Syntax: copy config < source-filename > config < target-filename >

This command makes a local copy of an existing startup-config file by copying the contents of an existing startup-config file in one memory slot to a new startup-config file in another, empty memory slot. This enables you to use a separate configuration file to experiment with configuration changes, while preserving the source file unchanged. It also simplifies a transition from one software version to another by enabling you to preserve the startup-config file for the earlier software version while creating a separate startup-config file for the later software version. With two such versions in place, you can easily reboot the switch with the correct startup-config file for either software version.

- If the destination startup-config file already exists, it is overwritten by the content of the source startup-config file.
- If the destination startup-config file does not already exist, it will be created in the first empty configuration memory slot on the switch.
- If the destination startup-config file does not already exist, but there are no empty configuration memory slots on the switch, then a new startup-config file is not created and instead, the CLI displays the following error message:

Unable to copy configuration to "< target-filename >".
For example, suppose both primary and secondary flash memory contain software release “A” and use a startup-config file named `config1`:

```
HP Switch(config)# show config files
Configuration files:
   id | act pri sec | name
-----------------------------
   1 | *    *     | config1
   2 |       *    |
   3 |       |
```

![Figure 5-42. Example of Using One Startup-Config File for Both Primary and Secondary Flash](image)

If you wanted to experiment with configuration changes to the software version in secondary flash, you could create and assign a separate startup-config file for this purpose.

```
HP Switch(config)# copy config config1 config config2
HP Switch(config)# startup-default secondary config config2
HP Switch(config)# show config files
Configuration files:
   id | act pri sec | name
-----------------------------
   1 | *    *      | config1
   2 |       *    | config2
   3 |       |
```

![Figure 5-43. Example of Creating and Assigning a New Startup-Config File](image)

Note

You can also generate a new startup-config file by booting the switch from a flash memory location from which you have erased the currently assigned startup-config file. Refer to “Erasing a Startup-Config File” in the next section.

Erasing a Startup-Config File

You can erase any of the startup-config files in the switch’s memory slots. In some cases, erasing a file causes the switch to generate a new, default-configuration file for the affected memory slot.
Switch Memory and Configuration
Multiple Configuration Files

In a redundant management system, this command erases the config or startup config file on both the active and the standby management modules as long as redundancy has not been disabled. If the standby management module is not in standby mode or has failed selftest, the config or startup config file is not erased.

Syntax: `erase < config < filename >> | startup-config >`

config < filename >: This option erases the specified startup-config file. If the specified file is not the currently active startup-config file, then the file is simply deleted from the memory slot it occupies. If the specified file is the currently active startup-config file, then the switch creates a new, default startup-config file with the same name as the erased file, and boots using this file. (This new startup-config file contains only the default configuration for the software version used in the reboot.)

Note: Where a file is assigned to either the primary or the secondary flash, but is not the currently active startup-config file, erasing the file does not remove the flash assignment from the memory slot for that file. Thus, if the switch boots using a flash location that does not have an assigned startup-config, then the switch creates a new, default startup-config file and uses this file in the reboot. (This new startup-config file contains only the default configuration for the software version used in the reboot.) Executing `write memory` after the reboot causes a switch-generated filename of `configx` to appear in the `show config files` display for the new file, where `x` corresponds to the memory slot number.

startup-config: This option erases the currently active startup-config file and reboots the switch from the currently active flash memory location. The erased startup-config file is replaced with a new startup-config file. The new file has the same filename as the erased file, but contains only the default configuration for the software version in the flash location (primary or secondary) used for the reboot. For example, suppose the last reboot was from primary flash using a configuration file named `minconfig`. Executing `erase startup-config` replaces the current content of `minconfig` with a default configuration and reboots the switch from primary flash.

Figure 5-44 illustrates using `erase config < filename >` to remove a startup-config file.
With the same memory configuration as is shown in the bottom portion of figure 5-44, executing `erase startup-config` boots the switch from primary flash, resulting in a new file named `minconfig` in the same memory slot. The new file contains the default configuration for the software version currently in primary flash.

Using the Clear + Reset Button Combination To Reset the Switch to Its Default Configuration

The Clear + Reset button combination described in the *Installation and Getting Started Guide* produces these results. That is, when you press the Clear + Reset button combination, the switch:

- Overwrites the content of the startup-config file currently in memory slot 1 with the default configuration for the software version in primary flash, and renames this file to `config1`.
- Erases any other startup-config files currently in memory.
- Configures the new file in memory slot 1 as the default for both primary and secondary flash locations (regardless of the software version currently in secondary flash).
- Boots the switch from primary flash using the new startup-config file.
Switch Memory and Configuration
Multiple Configuration Files

HP Switch(config)# show config files

Configuration files:

<table>
<thead>
<tr>
<th>id</th>
<th>act</th>
<th>pri</th>
<th>sec</th>
<th>name</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>config1</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Pressing Clear + Reset:
- Replaces all startup-config files with a single file named `config1` that contains the default configuration for the software version in primary flash.
- Resets the Active, Primary, and Secondary assignments as shown here.

Figure 5-45. Example of Clear + Reset Result

Transferring Startup-Config Files To or From a Remote Server

<table>
<thead>
<tr>
<th>Command</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>`copy config < src-file > tftp < ip-addr > < remote-file > < pc</td>
<td>unix > [oobm]`</td>
</tr>
<tr>
<td>`copy tftp config < dest-file > < ip-addr > < remote-file > < pc</td>
<td>unix > [oobm]`</td>
</tr>
<tr>
<td>`copy config < src-file > xmodem < pc</td>
<td>unix >`</td>
</tr>
<tr>
<td>`copy xmodem config < dest-file > < pc</td>
<td>unix >`</td>
</tr>
</tbody>
</table>

TFTP: Copying a Configuration File to a Remote Host

Syntax:

```
    copy config < src-file > tftp < ip-addr > < remote-file > < pc | unix > [oobm]
```

This is an addition to the `copy tftp` command options. Use this command to upload a configuration file from the switch to a TFTP server.

For switches that have a separate out-of-band management port, the `oobm` parameter specifies that the TFTP traffic will go out through the out-of-band management interface. If this parameter is not specified, the TFTP traffic goes out through the data interface. The `oobm` parameter is not available on switches that do not have a separate out-of-band management port.

For more on using TFTP to copy a file to a remote server, see “TFTP: Copying a Configuration File to a Remote Host” in Appendix A of the Management and Configuration Guide for your switch.
Switch Memory and Configuration

Multiple Configuration Files

For example, the following command copies a startup-config file named test-01 from the switch to a (UNIX) TFTP server at IP address 10.10.28.14:

HP Switch(config)# copy config test-01 tftp 10.10.28.14

test-01.txt unix

TFTP: Copying a Configuration File from a Remote Host

Syntax: `copy tftp config < dest-file > < ip-addr > < remote-file > < pc | unix > [oobm]`

This is an addition to the `copy tftp` command options. Use this command to download a configuration file from a TFTP server to the switch.

For switches that have a separate out-of-band management port, the `oobm` parameter specifies that the TFTP traffic must come in through the out-of-band management interface. If this parameter is not specified, the TFTP traffic comes in through the data interface. The `oobm` parameter is not available on switches that do not have a separate out-of-band management port.

Note: This command requires an empty memory slot in the switch. If there are no empty memory slots, the CLI displays the following message:

Unable to copy configuration to "<filename>".

You can erase one or more configuration files using the `erase config <filename>` command.

For more on using TFTP to copy a file from a remote host, see “TFTP: Copying a Configuration File from a Remote Host” in Appendix A of the Management and Configuration Guide for your switch.

For example, the following command copies a startup-config file named test-01.txt from a (UNIX) TFTP server at IP address 10.10.28.14 to the first empty memory slot in the switch:

HP Switch(config)# copy tftp config test-01 10.10.28.14
test-01.txt unix
Switch Memory and Configuration
Multiple Configuration Files

Xmodem: Copying a Configuration File to a Serially Connected Host

Syntax: \texttt{copy config < filename > xmodem < pc | unix >}

\textit{This is an addition to the \texttt{copy < config > xmodem} command options. Use this command to upload a configuration file from the switch to an Xmodem host.}

\textit{For more on using Xmodem to copy a file to a serially connected host, see "Xmodem: Copying a Configuration File to a Serially Connected PC or UNIX Workstation" in Appendix A of the Management and Configuration Guide for your switch.}

Xmodem: Copying a Configuration from a Serially Connected Host

Syntax: \texttt{copy xmodem config < dest-file > < pc | unix >}

\textit{This is an addition to the \texttt{copy xmodem} command options. Use this command to download a configuration file from an Xmodem host to the switch.}

\textit{For more on using Xmodem to copy a file from a serially connected host, see "Xmodem: Copying a Configuration File from a Serially Connected PC or UNIX Workstation" in Appendix A of the Management and Configuration Guide for your switch.}

Operating Notes for Multiple Configuration Files

\begin{itemize}
\item SFTP/SCP: The configuration files are available for sftp/scp transfer as /ctg/< filename >.
\end{itemize}
Display Configuration of Selected Interface

The options provided in this feature allow you to display all the configurations on a specified interface or VLAN with a single command. You can use the options with the startup config command, `show config`, and the running config command, `show running-config`.

Running Configuration Output

You can display the running configuration using this command. An example of the output is shown in Figure 5-46.

Syntax:
`show running-config [interface <port-list | loopback <0-7> | vlan <vlan-id-list>]] structured`

Displays running configuration information about the selected interface when one is specified. The interfaces can be ports, VLANs, or SVLANs.

Note: For the 5400zl, 3800, and 8200zl switches, when the command is executed in enhanced secure mode the following prompt displays:

```
Do you want to show sensitive information (y/n)?
```

If “Y/y” is entered, the normal command output is displayed on the console. If “N/n” is entered, all the sensitive information is hidden and will be displayed as asterisks (“*****”). The default option is “N/n” when interactive mode is disabled. For more information, see the chapter “Secure Mode (5400zl, 3800, and 8200zl)” in the Access Security Guide for your switch.
Switch Memory and Configuration

Display Configuration of Selected Interface

structured: Groups the config command information output in a logical manner. When the structured option is entered, the output displays the configuration settings, such as spanning-tree, followed by a list of all the switch interfaces showing any configured settings for each interface. The VLAN configuration information is displayed after the interface information.

When the structured option is not entered, the output first displays only the interfaces that have configuration settings. The other settings, such as spanning-tree, are displayed after the interfaces, and then the VLAN configuration information is displayed.

Note

The `show running config interface/vlan/svlan` command output cannot be downloaded to the switch; it will not download correctly. Copying and pasting the displayed configuration information into the switch configuration is not supported. This feature only provides a display of all the configuration information for a selected interface or range of interfaces in a single view.
Figure 5-46. Example of Running Configuration Output for Interfaces A2 - A4

Figure 5-47 shows an example of the running config for a range of interfaces. The configuration information for interfaces A2 and A3 is now displayed together.
Switch Memory and Configuration
Display Configuration of Selected Interface

Figure 5-47. Example of Running Config Output for a Specified Interface Range

```
HP Switch(config)# show running-config interface A2-A3

Running configuration:
interface A2
  disable
  name "test1"
  flow-control
  broadcast-limit 80
  speed-duplex 100-full
  unknown-vlans block
  qos priority 4
  gvrp join-timer 30 leave-timer 60 leaveall-timer 700
  dhcp-snooping trust
  lacp passive
  bandwidth-min output 20 10 10 10 20 10 10 10
  rate-limit bcast in percent 75
  ipv6 access-group "check" in
  untagged vlan 1
  exit

interface A3
  disable
  name "test1"
  flow-control
  broadcast-limit 80
  speed-duplex 100-full
  unknown-vlans block
  qos priority 4
  gvrp join-timer 30 leave-timer 60 leaveall-timer 700
  dhcp-snooping trust
  lacp passive
  bandwidth-min output 20 10 10 10 20 10 10 10
  rate-limit bcast in percent 75
  ipv6 access-group "check" in
  untagged vlan 1
  exit
```

Figure 5-48 shows an example of the running config file for a range of interfaces after some configuration changes have been made.
Switch Memory and Configuration
Display Configuration of Selected Interface

Figure 5-48. Example of Running Config Output for a Range of Interfaces

```
HP Switch(config)# no stack
HP Switch(config)# mesh 2-3
Command will take effect after saving configuration and reboot.

HP Switch(config)# write memory
HP Switch(config)# reload

HP Switch# show running-config interface 2-3

Running configuration:
interface 2
  untagged vlan 1
  mesh
  exit
interface 3
  flow-control
  untagged vlan 1
  mesh
  exit
```

Figure 5-49 is an example of the running config output showing VLAN information.
Switch Memory and Configuration
Display Configuration of Selected Interface

Figure 5-49. Example of Running Config Output Showing VLAN Information

In Figure 5-50, the configuration information for VLAN 4 is now displayed in one place.
Display Configuration of Selected Interface

Figure 5-50. Example of Running Config Output for a Range of VLANs

Figure 5-51 shows an example of the running config for a range of VLANs after configuration changes have been made to selected VLANs.

Figure 5-51. Example of Output for Running Config for a Range of VLANs
Switch Memory and Configuration
Display Configuration of Selected Interface

Startup Configuration Output

You can display the startup configuration using this command. An example of the startup configuration output is shown in Figure 5-52.

Syntax:

```
show config [interface <port-list | loopback <0-7> | vlan <vlan-id-list>]
```

Displays startup configuration information about the selected interface when one is specified. The interfaces can be ports, VLANs, or SVLANs.

Note: For the 5400zl, 3800, and 8200zl switches, when the command is executed in enhanced secure mode the following prompt displays:

```
Do you want to show sensitive information (y/n)?
```

If “Y/y” is entered, the normal command output is displayed on the console. If “N/n” is entered, all the sensitive information is hidden and will be displayed as asterisks (“*****”). The default option is “N/n” when interactive mode is disabled. For more information, see the chapter “Secure Mode (5400zl, 3800, and 8200zl)” in the Access Security Guide for your switch.
Switch Memory and Configuration
Display Configuration of Selected Interface

Figure 5-52. Example of Startup Configuration Output

```
HP Switch(config)# show config
Startup configuration:
; J8698A Configuration Editor; Created on release #K.14.54C
; Ver #02:0b:ef:e6
hostname "HP Switch"
module 1 type J9309A
module 3 type J8702A
module 6 type J8702A
vlan 1
   name "DEFAULT_VLAN"
   untagged A1-A4,C1-C9,C15-C24,F1-F24
   ip address dhcp-bootp
   no untagged C10-C14
   exit
vlan 5
   name "VLAN5"
   untagged C10-C14
   ip address 5.1.1.1 255.255.255.128
   exit
interface loopback 5
   ip address 7.1.1.1
   exit
interface loopback 7
   ip address 12.1.1.1
   exit
snmp-server community "public" unrestricted
```

Figure 5-53 shows an example of the startup config output for a selected VLAN.

```
HP Switch(vlan-5)# show config vlan 5
Startup configuration:
vlan 5
   name "VLAN5"
   untagged C10-C14
   ip address 5.1.1.1 255.255.255.128
   exit
```

Figure 5-53. Example of Startup Config Output for a Specific VLAN

Figure 5-54 shows an example of the startup config output for a selected VLAN.

```
HP Switch(config)# show config
```
Switch Memory and Configuration
Display Configuration of Selected Interface

Figure 5-54. Example of Startup Config Output for a Specific VLAN

```
HP Switch(vlan-5)# show config vlan 5
Startup configuration:
  vlan 5
    name "VLAN5"
    untagged C10-C14
    ip address 5.1.1.1 255.255.255.128
exit
```

Figure 5-55 shows an example of the startup config output for a range of interfaces for a specific VLAN.

```
HP Switch(vlan-5)# show config interface C10-C13
Startup configuration:
  interface C10
    untagged vlan 5
    exit
  interface C11
    untagged vlan 5
    exit
  interface C12
    untagged vlan 5
    exit
  interface C13
    untagged vlan 5
    exit
```

Figure 5-55. Example of Startup Config Output for a Range of Interfaces for a Specific VLAN
Automatic Configuration Update with DHCP Option 66

HP switches are initially booted up with the factory-shipped configuration file. This feature provides a way to automatically download a different configuration file from a TFTP server using DHCP Option 66. The prerequisites for this to function correctly are:

- One or more DHCP servers with Option 66 are enabled
- One or more TFTP servers has the desired configuration file.

Caution

This feature must use configuration files generated on the switch to function correctly. If you use configuration files that were not generated on the switch, and then enable this feature, the switch may reboot continuously.

CLI Command

The command to enable the configuration update using Option 66 is:

Syntax:

```
[no] dhcp config-file-update
```

Enables configuration file update using Option 66.

Default: Enabled

```
HP Switch(config)# dhcp config-file-update
```

Figure 5-56. Example of Enabling Configuration File Update Using Option 66
Possible Scenarios for Updating the Configuration File

The following table shows various network configurations and how Option 66 is handled.

<table>
<thead>
<tr>
<th>Scenario</th>
<th>Behavior</th>
</tr>
</thead>
</table>
| Single Server serving Multiple VLANs | - Each DHCP-enabled VLAN interface initiates DHCPDISCOVER message, receives DHCPOFFER from the server, and send DHCPREQUEST to obtain the offered parameters.
- If multiple interfaces send DHCPREQUESTs, it's possible that more than one DHCPACK is returned with a valid Option 66.
- Evaluating and updating the configuration file occurs only on the primary VLAN.
- Option 66 is ignored by any interfaces not belonging to the primary VLAN. |
| Multiple Servers serving a Single VLAN | - Each DHCP-enabled VLAN interface initiates one DHCPDISCOVER and receives one or more DHCPOFFER messages.
- Each interface accepts the best offer.
- Option 66 is processed only for the interface belonging to the primary VLAN. |
| Multiple Servers serving Multiple VLANs | - Each DHSP-enabled VLAN interface initiates DHCPDISCOVER and receives one or more DHCPOFFER messages.
- Each interface accepts the best offer.
- Option 66 is processed only for the interface belonging to the primary VLAN. |
| Multi-homed Server serving Multiple VLANs | - The switch perceives the multi-homed server as multiple separate servers.
- Each DHCP-enabled VLAN interface initiates DHCPDISCOVER and receives one DHCPOFFER message.
- Each interface accepts the offer.
- Option 66 is processed only for the interface belonging to the primary VLAN. |

Operating Notes

Replacing the Existing Configuration File: After the DHCP client downloads the configuration file, the switch compares the contents of that file with the existing configuration file. If the content is different, the new configuration file replaces the existing file and the switch reboots.

Option 67 and the Configuration File Name: Option 67 includes the name of the configuration file. If the DHCPACK contains this option, it overrides the default name for the configuration file (switch.cfg)
Switch Memory and Configuration
Automatic Configuration Update with DHCP Option 66

Global DHCP Parameters: Global parameters are processed only if received on the primary VLAN.

Best Offer: The “Best Offer” is the best DHCP or BootP offer sent by the DHCP server in response to the DHCPREQUEST sent by the switch. The criteria for selecting the “Best Offer” are:
- DHCP is preferred over BootP
- If two BootP offers are received, the first one is selected
- For two DHCP offers:
 - The offer from an authoritative server is selected
 - If there is no authoritative server, the offer with the longest lease is selected

Log Messages

The file transfer is implemented by the existing TFTP module. The system logs the following message if an incorrect IP address is received for Option 66:

“Invalid IP address <ip-address> received for DHCP Option 66”
Switch Memory and Configuration
Automatic Configuration Update with DHCP Option 66
Interface Access and System Information

Interface Access: Console/Serial Link, Web, and Inbound Telnet

The interface access features in the switch operate properly by default. However, you can modify or disable access features to suit your particular needs. Similarly, you can choose to leave the system information parameters at their default settings. However, modifying these parameters can help you to more easily distinguish one device from another in your network.

Interface Access Features

<table>
<thead>
<tr>
<th>Feature</th>
<th>Default</th>
<th>Menu</th>
<th>CLI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inactivity Time</td>
<td>0 Minutes (disabled)</td>
<td>page 6-5</td>
<td>page 6-7</td>
</tr>
<tr>
<td>Inbound Telnet Access</td>
<td>Enabled</td>
<td>page 6-5</td>
<td>page 6-4</td>
</tr>
<tr>
<td>Outbound Telnet Access</td>
<td>n/a</td>
<td>—</td>
<td>page 6-5</td>
</tr>
<tr>
<td>WebAgent Access</td>
<td>Enabled</td>
<td>page 6-5</td>
<td>page 6-7</td>
</tr>
<tr>
<td>Terminal type</td>
<td>VT-100</td>
<td>—</td>
<td>page 6-7</td>
</tr>
<tr>
<td>Event Log event types to list</td>
<td>All</td>
<td>—</td>
<td>page 6-7</td>
</tr>
<tr>
<td>(Displayed Events)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Baud Rate</td>
<td>Speed Sense</td>
<td>—</td>
<td>page 6-7</td>
</tr>
<tr>
<td>Flow Control</td>
<td>XON/XOFF</td>
<td>—</td>
<td>page 6-7</td>
</tr>
</tbody>
</table>

In most cases, the default configuration is acceptable for standard operation.

Note

Basic switch security is through passwords. You can gain additional security by using the security features described in the Access Security Guide for your switch. You can also simply block unauthorized access via the WebAgent or Telnet (as described in this section) and installing the switch in a locked environment.
Modifying the Interface Access

Interface Access Commands Used in This Section

<table>
<thead>
<tr>
<th>Command</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>show console</td>
<td>6-7</td>
</tr>
<tr>
<td>[no] telnet-server</td>
<td>6-7</td>
</tr>
<tr>
<td>[no] web-management</td>
<td>6-7</td>
</tr>
<tr>
<td>console</td>
<td>6-7</td>
</tr>
</tbody>
</table>

About Terminal Line Width and Length Settings

For console/serial link and inbound telnet sessions, the switch output:

- Uses whatever width is set by the terminal program. If width is not specified, 80 characters is the default.
- Automatically wraps on word boundaries (such as spaces) for non-columnar output
- Automatically wraps on column boundaries for columnar output

HP recommends that you do not set your terminal width (terminal width <y>) above 150 columns. (Windows telnet displays up to 156 characters on 1280 pixel wide display, so 150 is comfortably within this).

Listing the Current Console/Serial Link Configuration

This command lists the current interface access parameter settings.

Syntax: show console

This example shows the default console/serial configuration.
HP Switch(config)# show console

 Console/Serial Link
 Inbound Telnet Enabled [Yes] : Yes
 Web Agent Enabled [Yes] : Yes
 Terminal Type [VT100] : VT100

 Screen Refresh Interval (sec) [3] : 3
 Displayed Events [All] : All

 Baud Rate [Speed Sense] : speed-sense
 Flow Control [XON/XOFF] : XON/XOFF
 Session Inactivity Time (min) [0] : 0

Figure 6-1. Listing of Show Console Command
Reconfigure Inbound Telnet Access

In the default configuration, inbound Telnet access is enabled.

Syntax: \[\text{[no]} \text{ telnet-server [listen <oobm | data | both>]\]}

Enables or disables inbound Telnet access on a switch.

Use the `no` version of the command to disable inbound Telnet access.

The `listen` parameter is available only on switches that have a separate out-of-band management port. Values for this parameter are:

- **oobm** — inbound Telnet access is enabled only on the out-of-band management port. (This port is available on selected switch models.)
- **data** — inbound Telnet access is enabled only on the data ports.
- **both** — inbound Telnet access is enabled on both the out-of-band management port and on the data ports. This is the default value.

Refer to Appendix I, “Network Out-of-Band Management” in this guide for more information on out-of-band management.

The `listen` parameter is not available on switches that do not have a separate out-of-band management port.

To disable inbound Telnet access:

```
HP Switch(config)# no telnet-server
```

To re-enable inbound Telnet access:

```
HP Switch(config)# telnet-server
```
Outbound Telnet to Another Device

This feature operates independently of the telnet-server status and enables you to Telnet to another device that has an IP address.

Syntax: `telnet <ipv4-addr | ipv6-addr | hostname | switch-num> [oobm]`

- Initiates an outbound telnet session to another network device. The destination can be specified as:
 - IPv4 address
 - IPv6 address
 - Hostname
 - Stack number of a member switch (1-16) if the switch is a commander in a stack and stacking is enabled

For switches that have a separate out-of-band management port, the `oobm` parameter specifies that the Telnet traffic will go out from the out-of-band management interface. If this parameter is not specified, the Telnet traffic goes out from the data interface. The `oobm` parameter is not available on switches that do not have a separate out-of-band management port. Refer to Appendix I, “Network Out-of-Band Management” in this guide for more information on out-of-band management.

Note: If the console inactivity-timer expires, any outbound Telnet or SSH sessions that are open on the switch are terminated. (For information on console inactivity-timer, refer to “Reconfigure the Console/Serial Link Settings” on page 6-7.)

For example, if the host “Labswitch” is in the domain abc.com, you can enter the following command and the destination is resolved to “Labswitch.abc.com”.

```
HP Switch(config)# telnet Labswitch
```

You can also enter the full domain name in the command:

```
HP Switch(config)# telnet Labswitch.abc.com
```

You can use the `show telnet` command to display the resolved IP address.
Making Window Size Negotiation Available for a Telnet Session

When a telnet connection is established with a switch, the switch always uses the default values of 80 columns by 24 lines for the window dimensions. The window can be resized by either dragging the corner of the window, or by executing the `terminal length <x> width <y>` CLI command and then configuring the telnet client with those dimensions. The new window dimensions are lost after that telnet session ends.

When the telnet connection is established with an HP switch, either the switch or the telnet client needs to initiate the inquiry about the availability of NAWS. If NAWS is available, you can resize the window by dragging the corner of the window to the desired size. The telnet software uses NAWS to tell the switch what the new window dimensions are. If the switch supports the requested window dimensions, it uses them for all future interactions. If the switch does not support those window dimensions, it refuses them and the telnet client requests an alternate set of window dimensions. The negotiation continues until the telnet client and the switch agree on the window dimensions.

The switch currently responds to a request from the remote telnet client to negotiate window size. However, some telnet clients do not request to negotiate window size unless the switch’s telnet server suggests that NAWS is available.

HP Switch(config)# show telnet

Telnet Activity

<table>
<thead>
<tr>
<th>Session</th>
<th>Privilege</th>
<th>From</th>
<th>To</th>
</tr>
</thead>
<tbody>
<tr>
<td>** 1</td>
<td>Manager</td>
<td>Console</td>
<td></td>
</tr>
<tr>
<td>** 2</td>
<td>Manager</td>
<td>12.13.14.10</td>
<td>15.33.66.20</td>
</tr>
</tbody>
</table>

Figure 6-2. Example of show telnet Command Displaying Resolved IP Addresses
This feature allows window size negotiation to occur with telnet clients that support NAWS but do not try to use it unless it is suggested by the switch’s telnet server. The switch’s telnet server will suggest to the telnet client that NAWS is available.

Reconfigure WebAgent Access

In the default configuration, web browser access is enabled.

Syntax:

```
[no] web-management [listen <oobm | data | both>]
```

Use the no version of the command to disable inbound HTTP access.

The `listen` parameter is available only on switches that have a separate out-of-band management port. Values for this parameter are:

- **oobm** — inbound HTTP access is enabled only on the out-of-band management port.
- **data** — inbound HTTP access is enabled only on the data ports.
- **both** — inbound HTTP access is enabled on both the out-of-band management port and on the data ports. This is the default value.

Refer to Appendix I, “Network Out-of-Band Management” in this guide for more information on out-of-band management.

The listen parameter is not available on switches that do not have a separate out-of-band management port.

To disable WebAgent access:

```
HP Switch(config)# no web-management
```

To re-enable WebAgent access:

```
HP Switch(config)# web-management
```

Reconfigure the Console/Serial Link Settings

Syntax:

```
console
[terminal < vt100 | ansi | none >]
[screen-refresh < 1 | 3 | 5 | 10 | 20 | 30 | 45 | 60 >]
[baud-rate
```
Interface Access and System Information
Interface Access: Console/Serial Link, Web, and Inbound Telnet

< speed-sense | 1200 | 2400 | 4800 | 9600 | 19200 | 38400 | 57600 | 1155200 >
[flow-control < xon/xoff | none >]
[inactivity-timer < 0 | 1 | 5 | 10 | 15 | 20 | 30 | 60 | 120 >]
[events <none | all | not-info | critical | debug]
[local-terminal <vt 100 | none | ansi>]

Note
Changing the **console local-terminal** setting to **ansi** adds a **tty=ansi** entry before the switch name in the CLI output.

Changing the **console local-terminal** setting to **none** adds a **tty=none** entry before the switch name in the CLI output.

Note
If the **console inactivity-timer** expires, any outbound Telnet or SSH sessions open on the switch are terminated.

If you change the Baud Rate or Flow Control settings, you should make the corresponding changes in your console access device. Otherwise, you may lose connectivity between the switch and your terminal emulator due to differences between terminal and switch settings for these two parameters.

All console parameter changes except **events** and **inactivity-timer** require that you save the configuration with **write memory** and then execute **boot** before the new console configuration will take effect.

For example, figure 6-3 shows how to configure the switch with the following:
- VT100 operation
- 19,200 baud
- No flow control
- 10-minute inactivity time
- Critical log events

Denying Interface Access by Terminating Remote Management Sessions

The switch supports up to five management sessions. `show ip ssh` lists the current management sessions, and `kill` terminates a currently running remote session. (**Kill** does not terminate a Console session on the serial port, either through a direct connection or via a modem. It does not affect the console on the standby module.)

Syntax: `kill [< session-number >]`

For example, if you are using the switch’s serial port for a console session and want to terminate an active Telnet session, you would do the following:

```bash
HP Switch(config)# console terminal vt100
This command will take effect after saving the configuration and rebooting the system.
HP Switch(config)# console baud-rate 19200
This command will take effect after saving the configuration and rebooting the system.
HP Switch(config)# console flow-control none
This command will take effect after saving the configuration and rebooting the system.
HP Switch(config)# console inactivity-timer 60
HP Switch(config)# console events critical
HP Switch(config)# write memory
HP Switch(config)# reload
```

This command will take effect after saving the configuration and rebooting the system.

The switch implements the Inactivity Timer and Event Log changes immediately. The other console changes are implemented after executing `write memory` and `reload`.

Switch models supporting redundant management, console settings, such as mode, flow-control and baud-rate, are the same on both management modules. There cannot be individual settings for each management module.
Interface Access and System Information
Denying Interface Access by Terminating Remote Management Sessions

Figure 6-4. Example of Using the “Kill” Command To Terminate a Remote Session
System Information

System Information Features

<table>
<thead>
<tr>
<th>Feature</th>
<th>Default</th>
<th>CLI</th>
</tr>
</thead>
<tbody>
<tr>
<td>System Name</td>
<td>switch product name</td>
<td>page 6-12</td>
</tr>
<tr>
<td>System Contact</td>
<td>n/a</td>
<td>page 6-12</td>
</tr>
<tr>
<td>System Location</td>
<td>n/a</td>
<td>page 6-12</td>
</tr>
<tr>
<td>MAC Age Time</td>
<td>300 seconds</td>
<td>page 6-13</td>
</tr>
<tr>
<td>Time Sync Method</td>
<td>None</td>
<td>See “Time Protocols” in the Management and Configuration Guide</td>
</tr>
<tr>
<td>Time Zone</td>
<td>0</td>
<td>page 6-14</td>
</tr>
<tr>
<td>Daylight Time Rule</td>
<td>None</td>
<td>page 6-14</td>
</tr>
<tr>
<td>Time</td>
<td>January 1, 1990 at 00:00:00 at last power reset</td>
<td>page 6-14</td>
</tr>
</tbody>
</table>

Configuring system information is optional, but recommended.

System Name: Using a unique name helps you to identify individual devices where you are using an SNMP network management tool such as HP PCM+.

System Contact and Location: This information is helpful for identifying the person administratively responsible for the switch and for identifying the locations of individual switches.

MAC Age Time: The number of seconds a MAC address the switch has learned remains in the switch’s address table before being aged out (deleted). Aging out occurs when there has been no traffic from the device belonging to that MAC address for the configured interval.

Time Sync Method: Selects the method (TimeP or SNTP) the switch will use for time synchronization. For more on this topic, see “Time Protocols” in the Management and Configuration Guide.

Time Zone: The number of minutes your time zone location is to the West (+) or East (-) of Coordinated Universal Time (formerly GMT). The default 0 means no time zone is configured. For example, the time zone for Berlin, Germany is +60 (minutes) and the time zone for Vancouver, Canada is -480 (minutes).
Daylight Time Rule: Specifies the daylight savings time rule to apply for your location. The default is None. (For more on this topic, refer to Appendix D, “Daylight Savings Time on HP switches.”)

Time: Used in the CLI to specify the time of day, the date, and other system parameters.

Viewing and Configuring System Information

System Information Commands Used in This Section

<table>
<thead>
<tr>
<th>Command</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>show system information</td>
<td></td>
</tr>
<tr>
<td>hostname</td>
<td></td>
</tr>
<tr>
<td>snmp-server [contact] [location]</td>
<td></td>
</tr>
<tr>
<td>mac-age-time time</td>
<td></td>
</tr>
<tr>
<td>timezone</td>
<td></td>
</tr>
<tr>
<td>daylight-time-rule date time</td>
<td></td>
</tr>
</tbody>
</table>

Listing the Current System Information. This command lists the current system information settings.

Syntax: show system information

This example shows the switch’s default console configuration.

```
HP Switch# show system information
Status and Counters - General System Information
  System Name : HP Switch
  System Contact :
  System Location :
  MAC Age Time (sec) : 300
  Time Zone : 0
  Daylight Time Rule : None
```

Figure 6-5. Example of CLI System Information Listing Configure a System Name, Contact, and Location for the Switch
To help distinguish one switch from another, configure a plain-language identity for the switch.

Syntax:
```
hostname <name-string>
nsnmp-server [contact <system-contact>] [location <system-location>]
```

Each field allows up to 255 characters. To help simplify administration, it is recommended that you configure **hostname** to a character string that is meaningful within your system.

For example, to name the switch “Blue” with “Next-4474” as the system contact, and “North-Data-Room” as the location:

```bash
HP Switch(config)# hostname Blue
Blue(config)# snmp-server contact Ext-4474 location North-Data-Room
Blue(config)# show system
```

Status and Counters - General System Information

- **System Name:** Blue
- **System Contact:** Ext-4474
- **System Location:** North-Data-Room
- **MAC Age Time (sec):** 300
- **Time Zone:** 0
- **Daylight Time Rule:** None

- **Software revision:** K.15.05.0000x
- **ROM Version:** K.15.12
- **Allow V1 Modules:** Yes
- **Up Time:** 22 hours
- **CPU Util (%):** 2
- **IP Mgmt - Pkts Rx:** 8147
- **Pkts Tx:** 8155
- **Memory - Total:** 120,459,264
- **Free:** 80,188,992
- **Packet - Total:** 6750
- **Buffers - Free:** 5086
- **Lowest:** 5085

Reconfigure the MAC Age Time for Learned MAC Addresses. This command corresponds to the MAC Age Interval in the menu interface, and is expressed in seconds.
Interface Access and System Information

System Information

Syntax:

mac-age-time < 10 - 1000000 > (seconds)

Allows you to set the MAC address table's age-out interval. An address is aged out if the switch does not receive traffic from that MAC address for the age-out interval, measured in seconds. Default: 300 seconds.

For example, to configure the age time to seven minutes:

HP Switch(config)# mac-age-time 420

Configure the Time Zone and Daylight Time Rule. These commands:

- Set the time zone you want to use
- Define the daylight time rule for keeping the correct time when daylight-saving-time shifts occur.

Syntax:

time timezone < -720 - 840 >

time daylight-time-rule < none | alaska | continental-us-and-canada | middle-europe-and-portugal | southern-hemisphere | western-europe | user-defined>

East of the 0 meridian, the sign is “+”. West of the 0 meridian, the sign is “-”.

For example, the time zone setting for Berlin, Germany is +60 (zone +1, or 60 minutes), and the time zone setting for Vancouver, Canada is -480 (zone -8, or -480 minutes). To configure the time zone and daylight time rule for Vancouver, Canada:

HP Switch(config)# time timezone -480 daylight-time-rule continental-us-and-canada

Configure the Time and Date. The switch uses the time command to configure both the time of day and the date. Also, executing time without parameters lists the switch's time of day and date. Note that the CLI uses a 24-hour clock scheme; that is, hour (hh) values from 1 p.m. to midnight are input as 13 - 24, respectively.

Syntax:

time [hh:mm [:ss]] [mm/dd/ yy yy]

For example, to set the switch to 9:45 a.m. on November 17, 2010:

HP Switch(config)# time 9:45 11/17/10

Note

Executing reload or boot resets the time and date to their default startup values.
Configuring IP Addressing

Overview

You can configure IP addressing through all of the switch’s interfaces. You can also:

- Easily edit a switch configuration file to allow downloading the file to multiple switches without overwriting each switch’s unique gateway and VLAN 1 IP addressing.
- Assign up to 32 IP addresses to a VLAN (multinetting).
- Select an IP address to use as the source address for all outgoing traffic generated by a specified software application on the switch. This allows unique identification of the software application on the server site regardless of which local interface has been used to reach the destination server.

Why Configure IP Addressing? In its factory default configuration, the switch operates as a multiport learning bridge with network connectivity provided by the ports on the switch. However, to enable specific management access and control through your network, you will need IP addressing. Table 7-1 on page 7-12 shows the switch features that depend on IP addressing to operate.

IP Configuration

IP Configuration Features

<table>
<thead>
<tr>
<th>Feature</th>
<th>Default</th>
<th>Menu</th>
<th>CLI</th>
<th>WebAgent</th>
</tr>
</thead>
<tbody>
<tr>
<td>IP Address and Subnet Mask</td>
<td>DHCP/Bootp</td>
<td>page 7-4</td>
<td>page 7-6</td>
<td>page 7-11</td>
</tr>
<tr>
<td>Multiple IP Addresses on a VLAN</td>
<td>n/a</td>
<td>—</td>
<td>page 7-8</td>
<td>—</td>
</tr>
<tr>
<td>Default Gateway Address</td>
<td>none</td>
<td>page 7-4</td>
<td>page 7-6</td>
<td>page 7-11</td>
</tr>
<tr>
<td>Packet Time-To-Live (TTL)</td>
<td>64 seconds</td>
<td>page 7-4</td>
<td>page 7-6</td>
<td>—</td>
</tr>
</tbody>
</table>
Configuring IP Addressing

IP Configuration

IP Address and Subnet Mask. Configuring the switch with an IP address expands your ability to manage the switch and use its features. By default, the switch is configured to automatically receive IP addressing on the default VLAN from a DHCP/Bootp server that has been configured correctly with information to support the switch. (Refer to “DHCP/Bootp Operation” on page 7-12 for information on setting up automatic configuration from a server.) However, if you are not using a DHCP/Bootp server to configure IP addressing, use the menu interface or the CLI to manually configure the initial IP values. After you have network access to a device, you can use the WebAgent to modify the initial IP configuration if needed.

For information on how IP addressing affects switch operation, refer to “How IP Addressing Affects Switch Operation” on page 7-12.

Multinetting: Assigning Multiple IP Addresses to a VLAN. For a given VLAN you can assign up to 32 IP addresses. This allows you to combine two or more subnets on the same VLAN, which enables devices in the combined subnets to communicate normally through the network without needing to reconfigure the IP addressing in any of the combined subnets.

Default Gateway Operation. The default gateway is required when a router is needed for tasks such as reaching off-subnet destinations or forwarding traffic across multiple VLANs. The gateway value is the IP address of the next-hop gateway node for the switch, which is used if the requested destination address is not on a local subnet/VLAN. If the switch does not have a manually-configured default gateway and DHCP/Bootp is configured on the primary VLAN, then the default gateway value provided by the DHCP or Bootp server will be used. If the switch has a manually configured default gateway, then the switch uses his gateway, even if a different gateway is received via DHCP or Bootp on the primary VLAN. This is also true for manually configured TimeP, SNTP, and Time-To-Live(TTL). (In the default configuration, VLAN 1 is the Primary VLAN.) Refer to the information on Primary VLANs in the Advanced Traffic Management Guide for your switch.

<table>
<thead>
<tr>
<th>Feature</th>
<th>Default</th>
<th>Menu</th>
<th>CLI</th>
<th>WebAgent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time Server (Timep)</td>
<td>DHCP</td>
<td>page 7-4</td>
<td>page 7-6</td>
<td>—</td>
</tr>
<tr>
<td>Single Source IP Addressing</td>
<td>outgoing IP address</td>
<td>—</td>
<td>page 7-25</td>
<td>—</td>
</tr>
</tbody>
</table>
Packet Time-To-Live (TTL). This parameter specifies the maximum number of routers (hops) through which a packet can pass before being discarded. Each router decreases a packet’s TTL by 1 before forwarding the packet. If decreasing the TTL causes the TTL to be 0, the router drops the packet instead of forwarding it. In most cases, the default setting (64) is adequate.

Just Want a Quick Start with IP Addressing?

If you just want to give the switch an IP address so that it can communicate on your network, or if you are not using VLANs, HP recommends that you use the Switch Setup screen to quickly configure IP addressing. To do so, do one of the following:

- Enter `setup` at the CLI Manager level prompt.

 `HP Switch# setup`

- Select 8. Run Setup in the Main Menu of the menu interface.

For more on using the Switch Setup screen, refer to the Installation and Getting Started Guide you received with the switch.

IP Addressing with Multiple VLANs

In the factory-default configuration, the switch has one, permanent default VLAN (named DEFAULT_VLAN) that includes all ports on the switch. Thus, when only the default VLAN exists in the switch, if you assign an IP address and subnet mask to the switch, you are actually assigning the IP addressing to the DEFAULT_VLAN.

Notes

- If multiple VLANs are configured, then each VLAN can have its own IP address. This is because each VLAN operates as a separate broadcast domain and requires a unique IP address and subnet mask. A default gateway (IP) address for the switch is optional, but recommended.

- In the factory-default configuration, the default VLAN (named DEFAULT_VLAN) is the switch’s primary VLAN. The switch uses the primary VLAN for learning the default gateway address. The switch can also learn other settings from a DHCP or Bootp server, such as (packet) Time-To-Live (TTL), and Timep or SNMP settings. (Other VLANs can also use DHCP or BootP to acquire IP addressing. However, the switch’s gateway, TTL, and Timep or SNTP values, which are applied globally, and not per-VLAN, will be acquired through the primary VLAN only, unless manually set by using the CLI, Menu, or WebAgent. (If these parameters are manually set, they will not be overwritten by alternate values received
Configuring IP Addressing

IP Configuration

from a DHCP or Bootp server.) For more on VLANs, refer to the chapter titled “Static Virtual LANs” in the Advanced Traffic Management Guide for your switch.

■ The IP addressing used in the switch should be compatible with your network. That is, the IP address must be unique and the subnet mask must be appropriate for your IP network.

■ If you change the IP address through either Telnet access or the WebAgent, the connection to the switch will be lost. You can reconnect by either restarting Telnet with the new IP address or entering the new address as the URL in your web browser.

Menu: Configuring IP Address, Gateway, and Time-To-Live (TTL)

Do one of the following:

■ To manually enter an IP address, subnet mask, set the IP Config parameter to Manual and then manually enter the IP address and subnet mask values you want for the switch.

■ To use DHCP or Bootp, use the menu interface to ensure that the IP Config parameter is set to DHCP/Bootp, then refer to “DHCP/Bootp Operation” on page 7-12.

To Configure IP Addressing.

1. From the Main Menu, Select.

2. Switch Configuration …

5. IP Configuration

Notes

If multiple VLANs are configured, a screen showing all VLANs appears instead of the following screen.

The Menu interface displays the IP address for any VLAN. If you use the CLI to configure the IP address on a VLAN, use the CLI show ip command to list them. (Refer to “Viewing the Current IP Configuration” on page 7-6.)
Configuring IP Addressing

IP Configuration

Figure 7-1. Example of the IP Service Configuration Screen without Multiple VLANs Configured

2. Press \[E\] (for Edit).

3. If the switch needs to access a router, for example, to reach off-subnet destinations, select the Default Gateway field and enter the IP address of the gateway router.

4. If you need to change the packet Time-To-Live (TTL) setting, select Default TTL and type in a value between 2 and 255.

5. To configure IP addressing, select IP Config and do one of the following:
 - If you want to have the switch retrieve its IP configuration from a DHCP or Bootp server, at the IP Config field, keep the value as DHCP/Bootp and go to step 8.
 - If you want to manually configure the IP information, use the Space bar to select Manual and use the [Tab] key to move to the other IP configuration fields.

6. Select the IP Address field and enter the IP address for the switch.

7. Select the Subnet Mask field and enter the subnet mask for the IP address.

8. Press [Enter], then [S] (for Save).
Configuring IP Addressing

IP Configuration

CLI: Configuring IP Address, Gateway, and Time-To-Live (TTL)

<table>
<thead>
<tr>
<th>IP Commands Used in This Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>show ip</td>
<td>7-6</td>
</tr>
<tr>
<td>ip address < mask-length></td>
<td>7-7, 7-8</td>
</tr>
<tr>
<td>ip address /< mask-bits></td>
<td>7-7, 7-8</td>
</tr>
<tr>
<td>ip default-gateway</td>
<td>7-10</td>
</tr>
<tr>
<td>ip ttl</td>
<td>7-11</td>
</tr>
</tbody>
</table>

Viewing the Current IP Configuration.

Syntax: show ip

This command displays the IP addressing for each VLAN configured in the switch. If only the DEFAULT_VLAN exists, then its IP configuration applies to all ports in the switch. Where multiple VLANs are configured, the IP addressing is listed per VLAN. The display includes switch-wide packet time-to-live, and (if configured) the switch's default gateway and Timep configuration.

(You can also use the show management command to display the IP addressing and time server IP addressing configured on the switch. See figure 1-6 on page 1-9 in the Management and Configuration Guide for your switch.)

For example, in the factory-default configuration (no IP addressing assigned), the switch's IP addressing appears as:
Configuring IP Addressing

IP Configuration

With multiple VLANs and some other features configured, `show ip` provides additional information:

```plaintext
HP Switch> show ip

Internet (IP) Service
IP Routing : Disabled
Default Gateway :
Default TTL  : 64
Arp Age     : 20
Domain Suffix :
DNS server  :

<table>
<thead>
<tr>
<th>VLAN</th>
<th>IP Config</th>
<th>IP Address</th>
<th>Subnet Mask</th>
<th>Std</th>
<th>Local</th>
<th>Proxy ARP</th>
</tr>
</thead>
<tbody>
<tr>
<td>DEFAULT_VLAN</td>
<td>DHCP/Bootp</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure 7-2. Example of the Switch’s Default IP Addressing

Configure an IP Address and Subnet Mask. The following command includes both the IP address and the subnet mask. You must either include the ID of the VLAN for which you are configuring IP addressing or go to the

```
Configuring IP Addressing
IP Configuration

context configuration level for that VLAN. (If you are not using VLANs on the switch—that is, if the only VLAN is the default VLAN—then the VLAN ID is always “1”.)

Note

The default IP address setting for the DEFAULT_VLAN is **DHCP/Bootp**. On additional VLANs you create, the default IP address setting is **Disabled**.

Syntax:

```
[ no ] vlan < vlan-id > ip address <ip-address/mask-length>
or
[ no ] vlan < vlan-id > ip address < ip-address > < mask-bits >
or
vlan < vlan-id > ip address dhcp-bootp
```

This example configures IP addressing on the default VLAN with the subnet mask specified in mask bits.

```
HP Switch(config)# vlan 1 ip address 10.28.227.103 255.255.255.0
```

This example configures the same IP addressing as the preceding example, but specifies the subnet mask by mask length.

```
HP Switch(config)# vlan 1 ip address 10.28.227.103/24
```

This example deletes an IP address configured in VLAN 1.

```
HP Switch (config) no vlan 1 ip address 10.28.227.103/24
```

Configure Multiple IP Addresses on a VLAN (Multinetting). The following is supported:

- Up to 2000 IP addresses for the switch
- Up to 32 IP addresses for the same VLAN
- Up to 512 IP VLANs, that is, VLANs on which you can configure IP addresses
- Each IP address on a VLAN must be for a separate subnet, whether on the same VLAN or different VLANs.

Syntax:

```
[ no ] vlan < vlan-id > ip address < ip-address/mask-length >
[ no ] vlan < vlan-id > ip address < ip-address > < mask-bits >
```
For example, if you wanted to multinet VLAN_20 (VID = 20) with the IP addresses shown below, you would perform steps similar to the following. (For this example, assume that the first IP address is already configured.)

<table>
<thead>
<tr>
<th>IP Address</th>
<th>VID</th>
<th>IP Address</th>
<th>Subnet Mask</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st address</td>
<td>20</td>
<td>10.25.33.101</td>
<td>255.255.240.0</td>
</tr>
<tr>
<td>2nd address</td>
<td>20</td>
<td>10.26.33.101</td>
<td>255.255.240.0</td>
</tr>
<tr>
<td>3rd address</td>
<td>20</td>
<td>10.27.33.101</td>
<td>255.255.240.0</td>
</tr>
</tbody>
</table>

1. Go to VLAN 20.
2. Configure two additional IP addresses on VLAN 20.
3. Display IP addressing.

If you then wanted to multinet the default VLAN, you would do the following:
Configuring IP Addressing

IP Configuration

- **Figure 7-5. Example of Multinetting on the Default VLAN**

<table>
<thead>
<tr>
<th>VLAN</th>
<th>IP Config</th>
<th>IP Address</th>
<th>Subnet Mask</th>
<th>Proxy ARP</th>
</tr>
</thead>
<tbody>
<tr>
<td>DEFAULT_VLAN</td>
<td>Manual</td>
<td>10.20.30.100</td>
<td>255.255.240.0</td>
<td>No No</td>
</tr>
<tr>
<td>VLAN_20</td>
<td>Manual</td>
<td>10.25.33.101</td>
<td>255.255.240.0</td>
<td>No No</td>
</tr>
<tr>
<td></td>
<td>Manual</td>
<td>10.26.33.101</td>
<td>255.255.240.0</td>
<td>No No</td>
</tr>
<tr>
<td></td>
<td>Manual</td>
<td>10.27.33.101</td>
<td>255.255.240.0</td>
<td>No No</td>
</tr>
</tbody>
</table>

Note

The Internet (IP) Service screen in the Menu interface (figure 7-1 on page 7-5) displays the first IP address for each VLAN. You must use the CLI `show ip` command to display the full IP address listing for multinetted VLANs.

- **Removing or Replacing IP Addresses in a Multinetted VLAN.** To remove an IP address from a multinetted VLAN, use the `no` form of the IP address command shown on page 7-8. Generally, to replace one IP address with another, you should first remove the address you want to replace, and then enter the new address.

- **Configure the Optional Default Gateway.** Using the Global configuration level, you can manually assign one default gateway to the switch. (The switch does *not* allow IP addressing received from a DHCP or Bootp server to replace a manually configured default gateway.)

 Syntax: ip default-gateway <ip-address>

7-10
For example:

```
HP Switch(config)# ip default-gateway 10.28.227.115
```

Note

The switch uses the IP default gateway only while operating as a Layer 2 device. While routing is enabled on the switch, the IP default gateway is not used. Thus, to avoid loss of Telnet access to off-subnet management stations, you should use the `ip route` command to configure a static (default) route before enabling routing. For more information, refer to the chapter titled “IP Routing Features” in the *Multicast and Routing Guide* for your switch.

Configure Time-To-Live (TTL). The maximum number of routers (hops) through which a packet can pass before being discarded. (The default is 64.) Each router decreases a packet’s TTL by 1 before forwarding the packet. If a router decreases the TTL to 0, the router drops the packet instead of forwarding it.

Syntax: `ip ttl <number-of-hops>`

```
HP Switch(config)# ip ttl 60
```

In the CLI, you can execute this command only from the global configuration level. The TTL default is 64, and the range is 2 - 255.

WebAgent: Configuring IP Addressing

You can use the WebAgent to access IP addressing only if the switch already has an IP address that is reachable through your network.

1. In the navigation pane, click on **Home**.
2. Click on **Quick Setup**.
3. In the **Switch Quick Setup Parameters** box, click on **Change**.
4. Enter the IP address and any other information such as the Subnet mask and Gateway.
5. Click on **Save** to save your changes.
6. If you need further information on using the WebAgent, click on [?] to access the web-based help available for the switch.
How IP Addressing Affects Switch Operation

Without an IP address and subnet mask compatible with your network, the switch can be managed only through a direct terminal device connection to the Console RS-232 port. You can use direct-connect console access to take advantage of features that do not depend on IP addressing. However, to realize the full capabilities HP proactive networking offers through the switch, configure the switch with an IP address and subnet mask compatible with your network. The following table lists the general features available with and without a network-compatible IP address configured.

Table 7-1. Features Available With and Without IP Addressing on the Switch

<table>
<thead>
<tr>
<th>Features Available Without an IP Address</th>
<th>Additional Features Available with an IP Address and Subnet Mask</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Direct-connect access to the CLI and the menu interface.</td>
<td>• WebAgent access, with configuration, security, and diagnostic tools, plus the Alert Log for discovering problems detected in the switch along with suggested solutions</td>
</tr>
<tr>
<td>• DHCP or Bootp support for automatic IP address configuration, and DHCP support for automatic Timep server IP address configuration</td>
<td>• SNMP network management access such as PCM+ for network configuration, monitoring, problem-finding and reporting, analysis, and recommendations for changes to increase control and uptime</td>
</tr>
<tr>
<td>• Multiple Spanning Tree Protocol</td>
<td>• TACACS+, RADIUS, SSH, SSL, and 802.1X authentication</td>
</tr>
<tr>
<td>• Port settings and port trunking</td>
<td>• Multinetting on VLANs</td>
</tr>
<tr>
<td>• Switch meshing</td>
<td>• Telnet access to the CLI or the menu interface</td>
</tr>
<tr>
<td>• Console-based status and counters information for monitoring switch operation and diagnosing problems through the CLI or menu interface.</td>
<td>• IGMP</td>
</tr>
<tr>
<td>• VLANs and GVRP</td>
<td>• TimeP and SNTP server configuration</td>
</tr>
<tr>
<td>• Serial downloads of software updates and configuration files (Xmodem)</td>
<td>• TFTP download of configurations and software updates</td>
</tr>
<tr>
<td>• Link test</td>
<td>• Access Control Lists (ACLs)</td>
</tr>
<tr>
<td>• Port monitoring</td>
<td>• IP routing, Multicast Routing</td>
</tr>
<tr>
<td>• Password authentication</td>
<td>• VRRP router redundancy</td>
</tr>
<tr>
<td>• Quality of Service (QoS)</td>
<td>• PIM-DM and PIM-SM</td>
</tr>
<tr>
<td>• Authorized IP manager security</td>
<td>• Radius</td>
</tr>
<tr>
<td></td>
<td>• Ping test</td>
</tr>
</tbody>
</table>

DHCP/Bootp Operation

Overview. DHCP/Bootp is used to provide configuration data from a DHCP or Bootp server to the switch. This data can be the IP address, subnet mask, default gateway, Timep Server address, and TFTP server address. If a TFTP server address is provided, this allows the switch to TFTP a previously saved
configuration file from the TFTP server to the switch. With either DHCP or Bootp, the servers must be configured prior to the switch being connected to the network.

Note

The switches covered in this guide are compatible with both DHCP and Bootp servers.

The DHCP/Bootp Process. Whenever the IP Config parameter in the switch or in an individual VLAN in the switch is configured to **DHCP/Bootp** (the default), or when the switch is rebooted with this configuration:

1. DHCP/Bootp requests are automatically broadcast on the local network. (The switch sends one type of request to which either a DHCP or Bootp server can respond.)
2. When a DHCP or Bootp server receives the request, it replies with a previously configured IP address and subnet mask for the switch. The switch also receives an IP Gateway address if the server has been configured to provide one. In the case of Bootp, the server must first be configured with an entry that has the switch's MAC address. (To determine the switch's MAC address, refer to Appendix D, “MAC Address Management”.) The switch properly handles replies from either type of server. If multiple replies are returned, the switch tries to use the first reply.

Note

If you manually configure default gateway, TTL, TimeP, and/or SNTP parameters on the switch, it ignores any values received for the same parameters via DHCP or Bootp.

If the switch is initially configured for DHCP/Bootp operation (the default), or if it reboots with this configuration, it begins sending request packets on the network. If the switch does not receive a reply to its DHCP/Bootp requests, it continues to periodically send request packets, but with decreasing frequency. Thus, if a DHCP or Bootp server is not available or accessible to the switch when DHCP/Bootp is first configured, the switch may not immediately receive the desired configuration. After verifying that the server has become accessible to the switch, reboot the switch to re-start the process immediately.

DHCP Operation. A significant difference between a DHCP configuration and a Bootp configuration is that an IP address assignment from a DHCP server is automatic. Depending on how the DHCP server is configured, the switch may receive an IP address that is temporarily leased. Periodically the switch may be required to renew its lease of the IP configuration. Thus, the IP addressing provided by the server may be different each time the switch reboots or renews its configuration from the server. However, you can fix the address assignment for the switch by doing either of the following:
Configuring IP Addressing

IP Configuration

- Configure the server to issue an “infinite” lease.
- Using the switch’s MAC address as an identifier, configure the server with a “Reservation” so that it will always assign the same IP address to the switch. (For MAC address information, refer to Appendix D, “MAC Address Management”.)

For more information on either of these procedures, refer to the documentation provided with the DHCP server.

Bootp Operation. When a Bootp server receives a request it searches its Bootp database for a record entry that matches the MAC address in the Bootp request from the switch. If a match is found, the configuration data in the associated database record is returned to the switch. For many Unix systems, the Bootp database is contained in the `/etc/bootptab` file. In contrast to DHCP operation, Bootp configurations are always the same for a specific receiving device. That is, the Bootp server replies to a request with a configuration previously stored in the server and designated for the requesting device.

Bootp Database Record Entries. A minimal entry in the Bootp table file `/etc/bootptab` to update an IP address and subnet mask to the switch or a VLAN configured in the switch would be similar to this entry:

```
8212switch:
  ht=ether:
  ha=0030c1123456:
  ip=10.66.77.88:
  sm=255.255.248.0:
  gw=10.66.77.1:
  hn:
  vm=rfc1048
```

An entry in the Bootp table file `/etc/bootptab` to tell the switch or VLAN where to obtain a configuration file download would be similar to this entry:

```
8212switch:
  ht=ether:
  ha=0030c1123456:
  ip=10.66.77.88:
  sm=255.255.248.0:
  gw=10.66.77.1:
  lg=10.22.33.44:
  T144="switch.cfg":
  vm=rfc1048
```
Configuring IP Addressing

IP Configuration

Note
The above Bootp table entry is a sample that will work for the switch when the appropriate addresses and file names are used.

Network Preparations for Configuring DHCP/Bootp

In its default configuration, the switch is configured for DHCP/Bootp operation. However, the DHCP/Bootp feature will not acquire IP addressing for the switch unless the following tasks have already been completed:

■ For Bootp operation:
 • A Bootp database record has already been entered into an appropriate Bootp server.
 • The necessary network connections are in place
 • The Bootp server is accessible from the switch

■ For DHCP operation:
 • A DHCP scope has been configured on the appropriate DHCP server.
 • The necessary network connections are in place
 • A DHCP server is accessible from the switch

Note
Designating a primary VLAN other than the default VLAN affects the switch’s use of information received via DHCP/Bootp. For more on this topic, refer to the chapter describing VLANs in the Advanced Traffic Management Guide for your switch.
After you reconfigure or reboot the switch with DHCP/Bootp enabled in a network providing DHCP/Bootp service, the switch does the following:

- Receives an IP address and subnet mask and, if configured in the server, a gateway IP address and the address of a Tftp server.
- If the DHCP/Bootp reply provides information for downloading a configuration file, the switch uses TFTP to download the file from the designated source, then reboots itself. (This assumes that the switch or VLAN has connectivity to the TFTP file server specified in the reply, that the configuration file is correctly named, and that the configuration file exists in the TFTP directory.)

Loopback Interfaces

This section describes how to configure and use user-defined loopback interfaces on the switch.

Introduction

By default, each switch has an internal loopback interface (lo0) with the IP address 127.0.0.1. This IP address is used only for internal traffic transmitted within the switch and is not used in packet headers in egress traffic sent to network devices.

You can configure up to seven other loopback interfaces (lo1, lo2, lo3, and so on) on the switch to use to transmit network across the network. Each loopback interface can have multiple IP addresses. Routing protocols, such as RIP and OSPF, advertise the configured loopback addresses throughout a network or autonomous system.

User-defined loopback addresses provide the following benefits:

- A loopback interface is a virtual interface that is always up and reachable as long as at least one of the IP interfaces on the switch is operational. As a result, a loopback interface is useful for debugging tasks since its IP address can always be pinged if any other switch interface is up.
Configuring IP Addressing

Loopback Interfaces

- You can use a loopback interface to establish a Telnet session, ping the switch, and access the switch through SNMP, SSH, and HTTP (WebAgent).
- A loopback IP address can be used by routing protocols. For example, you can configure the loopback IP address as the router ID used to identify the switch in an OSPF area. Because the loopback interface is always up, you ensure that the switch’s router ID remains constant and that the OSPF network is protected from changes caused by downed interfaces.

Note

OSPF does not require that you use an IP address as the router ID. OSPF only requires the router ID to be a unique value within the autonomous system (AS). However, if you configure the loopback IP address as the router ID, OSPF can reach the switch if any switch interface is up. (Normally, OSPF automatically configures the router ID with the IP address of a switch interface. The disadvantage is that if the interface goes down, OSPF can no longer ping the switch using the router ID even if other interfaces are operational.)

For more information about how to configure a loopback IP address to participate in an OSPF broadcast area, refer to the section titled “(Optional) Assigning Loopback Addresses to an Area” in the Multicast and Routing Guide.

Configuring a Loopback Interface

To configure a loopback interface, enter the `interface loopback` command at the global configuration level of the CLI:

Syntax:

```
[no] interface loopback <number>
```

Creates a loopback interface, where `<number>` *is a value from 1 to 7. Use the `no` form of the command to remove the loopback interface.*

Note: You cannot remove the default loopback interface (number 0) with IP address 127.0.0.1.

You can configure up to thirty-two IP addresses on a loopback interface. To configure an IP address for the loopback interface, enter the `ip address <ip-address>` command at the loopback interface configuration level as shown in the following example.

Note that when you configure an IP address for a loopback interface, you do not specify a network mask. The default subnet mask 255.255.255.255 is used.
Configuring IP Addressing
Loopback Interfaces

Notes

- You can configure a loopback interface only from the CLI; you cannot configure a loopback interface from the WebAgent or Menu interface.
- Loopback interfaces share the same IP address space with VLAN configurations. The maximum number of IP addresses supported on a switch is 2048, which includes all IP addresses configured for both VLANs and loopback interfaces (except for the default loopback IP address 127.0.0.1).
- Each IP address that you configure on a loopback interface must be unique in the switch. This means that the address cannot be used by a VLAN interface or another loopback interface.

For example, if you configure a VLAN with IP address 172.16.100.8/24, you cannot configure a loopback interface with IP address 172.16.100.8. In the same way, if you configure a loopback interface (lo1) with IP address 172.16.101.8, you cannot configure another loopback interface (lo2) with IP address 172.16.101.8.
- You can configure multiple IP addresses on a loopback interface (lo0 to lo7). Up to thirty-two IP addresses are supported on a loopback interface. The following example shows valid IP address configurations on two loopback interfaces.

```
HP Switch(config)# interface loopback 1
HP Switch(config)# ip address 10.1.1.1
HP Switch(config)# interface loopback 0
HP Switch(lo0)# ip address 172.16.101.8
HP Switch(lo0)# ip address 172.16.101.9
HP Switch(lo0)# exit
HP Switch(config)# interface loopback 1
HP Switch(lol)# ip address 172.16.102.1
HP Switch(lol)# ip address 172.16.102.2
```

Figure 7-6. Example of a Loopback Interface Configuration

Displaying Loopback Interface Configurations

To display the list of loopback interfaces which have been assigned IP addresses, enter the `show ip` command.
In the `show ip` command output, information about configured loopback interfaces is displayed below other IP configuration parameters, such as packet time-to-live (TTL) and ARP age-out values, and VLAN IP configurations. The following example displays the IP addresses configured for two user-defined loopback interfaces (`lo1` and `lo2`).

<table>
<thead>
<tr>
<th>VLAN</th>
<th>IP Config</th>
<th>IP Address</th>
<th>Subnet Mask</th>
<th>Std</th>
<th>Local</th>
</tr>
</thead>
<tbody>
<tr>
<td>DEFAULT_VLAN</td>
<td>Manual</td>
<td>10.0.8.121</td>
<td>255.255.0.0</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>VLAN2</td>
<td>Manual</td>
<td>192.168.12.1</td>
<td>255.255.255.0</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>VLAN3</td>
<td>Disabled</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Loopback</th>
<th>IP Config</th>
<th>IP Address</th>
<th>Subnet Mask</th>
</tr>
</thead>
<tbody>
<tr>
<td>lo1</td>
<td>Manual</td>
<td>172.16.110.2</td>
<td>255.255.255.255</td>
</tr>
<tr>
<td>lo2</td>
<td>Manual</td>
<td>172.16.112.2</td>
<td>255.255.255.255</td>
</tr>
<tr>
<td>lo2</td>
<td>Manual</td>
<td>172.16.114.1</td>
<td>255.255.255.255</td>
</tr>
</tbody>
</table>

Figure 7-7. Example of show ip Command Output

Note

The default loopback interface (`lo0`) with IP address 127.0.0.1 is not displayed in the `show ip` command output because it is permanently configured on the switch. To display the default loopback address, enter the `show ip route` command as shown in figure 7-8.
Configuring IP Addressing
Loopback Interfaces

To display the loopback interfaces configured on the switch in a list of IP routing entries displayed according to destination IP address, enter the `show ip route` command.

The following example displays the configuration of the default loopback interface (lo0) and one user-defined loopback interface (lo2).

```
HP Switch# show ip route

IP Route Entries

<table>
<thead>
<tr>
<th>Destination</th>
<th>Gateway</th>
<th>VLAN Type</th>
<th>Sub-Type</th>
<th>Metric</th>
<th>Dist.</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.0.0.0/16</td>
<td>DEFAULT_VLAN</td>
<td>1</td>
<td>connected</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>127.0.0.0/8</td>
<td>reject</td>
<td></td>
<td>static</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>127.0.0.1/32</td>
<td>lo0</td>
<td>1</td>
<td>connected</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>172.16.102.0/24</td>
<td>VLAN2</td>
<td>2</td>
<td>connected</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

Figure 7-8. Example of show ip route Command Output
```
IP Preserve: Retaining VLAN-1 IP Addressing Across Configuration File Downloads

For the switches covered in this guide, IP Preserve enables you to copy a configuration file to multiple switches while retaining the individual IP address and subnet mask on VLAN 1 in each switch, and the Gateway IP address assigned to the switch. This enables you to distribute the same configuration file to multiple switches without overwriting their individual IP addresses.

Operating Rules for IP Preserve

When `ip preserve` is entered as the last line in a configuration file stored on a TFTP server:

- If the switch’s current IP address for VLAN 1 was not configured by DHCP/Bootp, IP Preserve retains the switch’s current IP address, subnet mask, and IP gateway address when the switch downloads the file and reboots. The switch adopts all other configuration parameters in the configuration file into the startup-config file.

- If the switch’s current IP addressing for VLAN 1 is from a DHCP server, IP Preserve is suspended. In this case, whatever IP addressing the configuration file specifies is implemented when the switch downloads the file and reboots. If the file includes DHCP/Bootp as the IP addressing source for VLAN 1, the switch will configure itself accordingly and use DHCP/Bootp. If instead, the file includes a dedicated IP address and subnet mask for VLAN 1 and a specific gateway IP address, then the switch will implement these settings in the startup-config file.

- The `ip preserve` statement does not appear in `show config` listings. To verify IP Preserve in a configuration file, open the file in a text editor and view the last line. For an example of implementing IP Preserve in a configuration file, see figure 7-9, below.

Enabling IP Preserve

To set up IP Preserve, enter the `ip preserve` statement at the end of a configuration file. (Note that you do not execute IP Preserve by entering a command from the CLI).
Configuring IP Addressing
IP Preserve: Retaining VLAN-1 IP Addressing Across Configuration File Downloads

```
; J9091A Configuration Editor; Created on release #K.15.06.0000x
hostname "HP Switch"
time daylight-time-rule None
.
.
password manager
password operator
ip preserve

Entering "ip preserve" in the last line of a configuration file implements IP Preserve when the file is downloaded to the switch and the switch reboots.

Figure 7-9. Example of Implementing IP Preserve in a Configuration File

For example, consider figure 7-10:

Figure 7-10. Example of IP Preserve Operation with Multiple Series Switches

If you apply the following configuration file to figure 7-10, switches 1 - 3 will retain their manually assigned IP addressing and switch 4 will be configured to acquire its IP addressing from a DHCP server.
Configuring IP Addressing

IP Preserve: Retaining VLAN-1 IP Addressing Across Configuration File Downloads

Figure 7-11. Configuration File in TFTP Server, with DHCP/Bootp Specified as the IP Addressing Source

If you apply this configuration file to figure 7-10, switches 1 - 3 will still retain their manually assigned IP addressing. However, switch 4 will be configured with the IP addressing included in the file.
Configuring IP Addressing

IP Preserve: Retaining VLAN-1 IP Addressing Across Configuration File Downloads

To summarize the IP Preserve effect on IP addressing:

- If the switch received its most recent VLAN 1 IP addressing from a DHCP/Bootp server, it ignores the IP Preserve command when it downloads the configuration file, and implements whatever IP addressing instructions are in the configuration file.

- If the switch did not receive its most recent VLAN 1 IP addressing from a DHCP/Bootp server, it retains its current IP addressing when it downloads the configuration file.

- The content of the downloaded configuration file determines the IP addresses and subnet masks for other VLANs.
Configuring a Single Source IP Address

Overview

This feature applies to the following software applications:

- RADIUS
- SFlow
- SNTP
- System Logging applications
- TACACS
- Telnet
- TFTP

The above IP-based software applications use a client-server communication model, that is, the client's source IP address is used for unique client identification. The source IP address is determined by the system and is usually the IP address of the outgoing interface in the routing table. However, routing switches may have multiple routing interfaces due to load balancing or routing redundancy, and outgoing packets can potentially be sent by different paths at different times. This results in different source IP addresses, which creates a client identification problem on the server site. For example, there is no way to designate a fixed IP address for outgoing packets for RADIUS or TACACS, so it is necessary to configure in the RADIUS or TACACS database all possible IP addresses that are configured on the switch as valid clients. When using system logging, it can be difficult to interpret the logging and accounting data on the server site as the same client can be logged with different IP addresses.

To decrease the amount of administrative work involved, a configuration model is provided that allows the selection of an IP address to use as the source address for all outgoing traffic generated by a specified software application on the switch. This allows unique identification of the software application on the server site regardless of which local interface has been used to reach the destination server.
Specifying the Source IP Address

The CLI command **ip source-interface** is used to specify the source IP address for an application. Different source IP addresses can be used for different software applications, but only one source IP address can be specified for each application.

**Syntax:**

```
[no] ip source-interface <radius | sflow | sntp | syslog | tacacs | telnet | tftp | all> <loopback <id> | vlan <vlan-id> address <ip-address>>
```

Determines the source IP address used by the specified software application when transmitting IP packets. The **all** parameter can be used to set one IP address for all the listed applications.

The **no** version of the command cancels the configuration and the application reverts to its default behavior. The system determines the source IP address of outgoing application-specific IP packets at packet transmission time.

**loopback <id>**: Specifies that the IP address of the loopback interface is used as the source IP address in outgoing packets. If the loopback interface has no IP address, then the application reverts to the default behavior. If more than one IP address is configured, then the lowest IP address is used.

**vlan <vlan-id>**: Specifies that the IP address of the indicated VLAN interface is used as the source IP address of outgoing packets. If the specified VLAN interface has no IP address configured, or is down, then the application reverts to the default behavior. If more than one IP address is configured, then the lowest IP address is used.

**address <ip-address>**: Specifies the IP address that should be used as the source IP address of outgoing packets. The IP address must be a valid IP address configured on one of the switch's VLAN or loopback interfaces. If the interface is down, then the application reverts to the default behavior.

The Source IP Selection Policy

The source IP address selection for the application protocols is defined through assignment of one of the following policies:
Configuring a Single Source IP Address

- **Outgoing Interface**—the IP address of the outgoing IP interface is used as the source IP address. This is the default policy and the default behavior of applications.
- **Configured IP Address**—the specific IP address that is used as the source IP address. This address is configured on one of the switch's IP interfaces, either a VLAN interface or a Loopback interface.
- **Configured IP Interface**—the IP address from the specific IP interface (VLAN or Loopback) is used as the source IP address. If there are multiple IP addresses assigned (multinetting, for example), the lowest IP address is used.

If the selection policy cannot be executed because the interface does not have an IP address configured, does not exist, or is down, the application protocol uses the default Outgoing Interface policy. A warning message is displayed, but the configuration changes are accepted. When using the `show ip source-interface status` command to display information about the source IP address selection policy, the administratively-assigned source IP selection policy and the actual (operational) source IP selection policy in effect are displayed. The operational source IP selection policy may be different from the assigned source selection policy if the IP interface does not exist or is down. In this case, the default of Outgoing Interface appears as the operational policy (See figure 7-13).

![Figure 7-13. Example of the Administratively-assigned Source IP Selection Policy Differing From the Operational Policy](image)

The `no` form of the `ip source-interface` command reverts the application protocols to the default behavior. The Outgoing Interface policy is used.

Figure 7-14 is an example of assigning a specific source IP address for a RADIUS application. The administrative policy is Configured IP Address.
Figures 7-14, 7-15, and 7-16 illustrate the configuration of VLAN interfaces as source IP addresses for RADIUS, TACACS, and syslog, respectively. These figures show the command output for setting up the source IP addresses and the resulting configuration information.

- **Figure 7-14**: Example of a Specific IP Address Assigned for the RADIUS Application Protocol
  
  In figure 7-15, a VLAN interface (VLAN 22) is specified as the source IP address for TACACS. The administrative policy is Configured IP Interface.

- **Figure 7-15**: Example of Using a VLAN Interface as the Source IP Address for TACACS
  
  Figure 7-16 shows a VLAN interface being specified as the source IP address for logging. The administrative policy is Configured IP Interface.

- **Figure 7-16**: Example of Using a VLAN Interface as the Source IP Address for Logging (Syslog)
Configuring IP Addressing
Configuring a Single Source IP Address

Displaying the Source IP Interface Information

There are several show commands that can be used to display information about the source IP interface status.

**Syntax:**
```
show ip source-interface status [radius | sflow | sntp | tacacs | telnet | tftp | syslog]
```

Displays the operational status information for the source IP address selection policy. Both the administratively-assigned source IP selection policy and the operational source IP selection policy are displayed.

When no parameters are specified, policy information for all protocols is displayed.

```
HP Switch(config)# show ip source-interface status
Source-IP Status Information

<table>
<thead>
<tr>
<th>Protocol</th>
<th>Admin Selection Policy</th>
<th>Oper Selection Policy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tacacs</td>
<td>Configured IP Interface Configured IP Interface</td>
<td></td>
</tr>
<tr>
<td>Radius</td>
<td>Configured IP Address Configured IP Address</td>
<td></td>
</tr>
<tr>
<td>Syslog</td>
<td>Configured IP Interface Outgoing Interface</td>
<td></td>
</tr>
<tr>
<td>Telnet</td>
<td>Outgoing Interface Outgoing Interface</td>
<td></td>
</tr>
<tr>
<td>Tftp</td>
<td>Outgoing Interface Outgoing Interface</td>
<td></td>
</tr>
<tr>
<td>Snmp</td>
<td>Outgoing Interface Outgoing Interface</td>
<td></td>
</tr>
<tr>
<td>Sflow</td>
<td>Configured IP Interface Configured IP Interface</td>
<td></td>
</tr>
</tbody>
</table>
```

**Figure 7-17. Example of the Data Displayed for Source IP Interface Status**

When executing the `show ip source-interface` command without parameters, the configured IP interfaces (VLANs) and IP addresses are displayed for each protocol.
Configuring IP Addressing
Configuring a Single Source IP Address

The `show ip source-interface detail` command displays detailed information about the configured policies, source IP address, and interface state for each protocol.

**Syntax:**
```
show ip source-interface detail [radius | sflow | sntp | tacacs | telnet | tftp | syslog]
```

Displays detailed operational status information for the source IP address selection policy. Information about the configured policies, source IP address and interface state are displayed.

When no parameters are specified, policy information for all protocols is displayed.

---

HP Switch(config)# show ip source-interface

Source-IP Configuration Information

<table>
<thead>
<tr>
<th>Protocol</th>
<th>Admin Selection Policy</th>
<th>IP Interface</th>
<th>IP Address</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tacacs</td>
<td>Configured IP Interface vlan 22</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Radius</td>
<td>Configured IP Address</td>
<td>10.10.10.2</td>
<td></td>
</tr>
<tr>
<td>Syslog</td>
<td>Configured IP Interface vlan 10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Telnet</td>
<td>Outgoing Interface</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tftp</td>
<td>Outgoing Interface</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sntp</td>
<td>Outgoing Interface</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sflow</td>
<td>Outgoing Interface</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure 7-18. Example of show ip source-interface Command Output
The `show` command can also be used with the application to display the source IP address selection information in effect for the application protocol.
Configuring IP Addressing
Configuring a Single Source IP Address

![Figure 7-20. Example of show radius Command Displaying Source IP Selection Information](image)

![Figure 7-21. Example of show tacacs Command Displaying Source IP Selection Information](image)

![Figure 7-22. Example of show debug Command Displaying Source IP Selection Information for Syslog](image)
Configuring IP Addressing

Configuring a Single Source IP Address

Figure 7-23. Example of show telnet Command Displaying Source IP Selection

```
HP Switch(config)# show telnet

Telnet Activity
Source IP Selection: 10.10.10.11
Session : ** 1
Privilege: Manager
From : Console
To :
```

Source IP Selection is displayed.

Figure 7-24. Example of show sntp Command Displaying Source IP Selection

```
HP Switch(config)# show sntp

SNTP Configuration
SNTP Authentication : Disabled
Time Sync Mode: Timep
SNTP Mode : disabled
Poll Interval (sec) [720] : 720
Source IP Selection: Outgoing Interface
```

Source IP Selection is displayed.

Figure 7-25. Example of sFlow Agent Information

```
HP Switch(config)# show sflow agent

Version : 1.3;HP;K.15.07.0000x
Agent Address : 10.1.1.1
Source IP Selection : Configured IP Interface
```

Error Messages

The following error messages may appear when configuring source IP selection if the interface does not exist, is not configured for IP, or is down.

<table>
<thead>
<tr>
<th>Error Message</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Warning: Specified IP address is not configured on</td>
<td>The IP address specified has not been assigned to</td>
</tr>
<tr>
<td>any interface</td>
<td>any interface on the switch.</td>
</tr>
<tr>
<td>Warning: Specified IP interface is not configured</td>
<td>The IP interface has not been configured.</td>
</tr>
</tbody>
</table>
Configuring IP Addressing
Configuring a Single Source IP Address

<table>
<thead>
<tr>
<th>Error Message</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Warning: Specified IP interface is not configured for IP</td>
<td>An IP address has not been assigned to this interface.</td>
</tr>
<tr>
<td>Warning: Specified IP interface is down.</td>
<td>The interface on the switch associated with this IP address is down.</td>
</tr>
<tr>
<td>Warning: Specified IP interface is configured for DHCP</td>
<td>The IP address has not been configured specifically (manually) for this interface and may change.</td>
</tr>
</tbody>
</table>
Software Management

Downloading Switch Documentation and Software from the Web

You can download software updates and the corresponding product documentation from the HP Networking Website. Check the web site frequently for the latest software version available for your switch.

Viewing or Downloading the Software Manual Set

Go to: www.hp.com/networking/support

Downloading Software Updates for Your Switch

HP periodically provides switch software updates through the HP Networking website (www.hp.com/networking/support). After you acquire the new software file, you can use one of the following methods for downloading it to the switch:

- For a TFTP transfer from a server, do either of the following:
  - Select Download OS in the Main Menu of the switch’s menu interface and use the (default) TFTP option.
  - Use the copy tftp command in the switch’s CLI (see below).
- For an Xmodem transfer from a PC or Unix workstation, do either of the following:
  - Select Download OS in the Main Menu of the switch’s menu interface and select the XMODEM option.
  - Use the copy xmodem command in the switch’s CLI (page 8-3).
- Use the USB port to download a software file from a USB flash drive (page 8-4).
- Use the download utility in PCM+ management software.
Software Management

Downloading Switch Documentation and Software from the Web

**Note**

Downloading new software does not change the current switch configuration. The switch configuration is contained in a separate file that can also be transferred, for example, to archive or to be used in another switch of the same model.

This section describes how to use the CLI to download software to the switch. You can also use the menu interface for software downloads. For more information, see “Using the Menu Interface” on page 2-1 in this guide.

**TFTP Download from a Server**

**Syntax:** `copy tftp flash <ip-address> <remote-os-file> [ < primary | secondary > ]`

Note that if you do not specify the flash destination, the TFTP download defaults to the primary flash.

For example, to download a software file named K_15_01_0031.swi from a TFTP server with the IP address of 10.28.227.103:

1. Execute the copy command as shown below:
   ```
 HP Switch# copy tftp flash 10.28.227.103 K_15_01_0031.swi
 The primary OS image will be deleted. continue [y/n]? Y
 03125K
   ```

2. When the switch finishes downloading the software file from the server, it displays the progress message
   ```
 Validating and Writing System Software to FLASH...
   ```

3. When the CLI prompt re-appears, the switch is ready to reboot to activate the downloaded software:
   a. Use the `show flash` command to verify that the new software version is in the expected flash area (primary or secondary)
   b. Reboot the switch from the flash area that holds the new software (primary or secondary), using the following command:
      ```
 Syntax: boot system flash [< primary | secondary >]
      ```

After the switch reboots, it displays the CLI or Main Menu, depending on the **Logon Default** setting last configured in the menu’s Switch Setup screen.
4. Verify the software version by displaying the system information for the switch (for example, through the `show system-information` command), and viewing the `Software revision` field.

Xmodem Download From a PC or Unix Workstation

This procedure assumes that:

- The switch is connected via the Console RS-232 port to a PC operating as a terminal. (Refer to your switch Installation and Getting Started Guide for information on connecting a PC as a terminal and running the switch console interface.)
- The switch software is stored on a disk drive in the PC.
- The terminal emulator you are using includes the Xmodem binary transfer feature. (For example, in the HyperTerminal application included with most Windows systems, the Send File option in the Transfer drop-down menu supports the Xmodem protocol.)

Using Xmodem and a terminal emulator, you can download a switch software file to either primary or secondary flash using the CLI.

**Syntax:** `copy xmodem flash [primary | secondary]`

1. To reduce the download time, you may want to increase the baud rate in your terminal emulator and in the switch to a value such as 115200 bits per second. (The baud rate must be the same in both devices.) For example, to change the baud rate in the switch to 115200, execute this command:

   ```
 HP Switch(config)# console baud-rate 115200
   ```

   (If you use this option, be sure to set your terminal emulator to the same baud rate.)

   Changing the console baud-rate requires saving to the Startup Config with the `write memory` command. Alternatively, you can logout of the switch and change your terminal emulator speed and allow the switch to Auto-Detect your new higher baud rate (i.e. 115200 bps)

2. Execute the following command in the CLI:

   ```
 HP Switch# copy xmodem flash primary
 The primary OS image will be deleted. continue [y/n]? Y
 Press 'Enter' and start XMODEM on your host...
   ```

3. Execute the terminal emulator commands to begin the Xmodem transfer.
   For example, using HyperTerminal:
a. Click on **Transfer**, then **Send File**.

b. Type the file path and name in the **Filename** field.

c. In the Protocol field, select **Xmodem**.

d. Click on the **Send** button.

The download can take several minutes, depending on the baud rate used in the transfer.

4. If you increased the baud rate on the switch (1), use the same command to return it to its previous setting. (A baud rate of 9600 bits per second is recommended for most applications.) Remember to return your terminal emulator to the same baud rate as the switch.)

5. Use the **show flash** command to verify that the new software version is in the expected flash area (primary or secondary).

6. Reboot the switch from the flash area that holds the new software (primary or secondary).
   
   After the switch reboots, it displays the CLI or Main Menu, depending on the **Logon Default** setting last configured in the menu’s Switch Setup screen.

### Using USB to Download Switch Software

To use the USB port on the switch to download a software version from a USB flash drive:

- The software version must be stored on the USB flash drive, and you must know the file name (such as K_15_01_0031.swi).
- The USB flash drive must be properly installed in the USB port on the switch.

**Note**

Some USB flash drives may not be supported on your switch. For information on USB device compatibility, refer to the HP networking support FAQ web pages, [www.hp.com/go/procurve/faqs](http://www.hp.com/go/procurve/faqs), and select FAQs for your switch.

**Syntax:** `copy usb flash <filename> [ <primary | secondary > ]`

For example, to download a software file named K_15_01_0031.swi from a USB flash drive:

1. Execute the copy command as shown below:
Software Management

Downloading Switch Documentation and Software from the Web

HP Switch# copy usb flash K_15_01_0031.swi
secondary
The secondary OS image will be deleted. continue
[y/n]? Y
03125K

2. When the switch finishes downloading the software file from the server, it displays the progress message

Validating and Writing System Software to FLASH...

3. When the CLI prompt re-appears, the switch is ready to reboot to activate the downloaded software:
   a. Use the `show flash` command to verify that the new software version is in the expected flash area (primary or secondary)
   b. Reboot the switch from the flash area that holds the new software (primary or secondary), using the following command:

   **Syntax:**
   ```bash
 boot system flash [< primary | secondary >]
   ```

   After the switch reboots, it displays the CLI or Main Menu, depending on the Logon Default setting last configured in the menu’s Switch Setup screen.

4. Verify the software version by displaying the system information for the switch (for example, through the `show system-information` command), and viewing the Software revision field.

Software Signing and Verification

As an enhanced security feature, you can verify whether a software image being downloaded to or stored in your switch has, in fact, been provided by HP Networking without any modification or corruption.

Validation is based on the image signature that is generated and attached to the switch software by HP Code Signing Service (HPCSS). HP Networking implemented digital signature validation starting with specific switch software versions. For a list of these software versions, go to: www.hp.com/networking/swvalidation.

**Note**

Once a switch software image has been digitally signed on a specific version, all later versions will also be signed.
Switches supporting digital signature verification will generate an error message if you attempt to download an image that is not digitally signed. For example, using the CLI commands described above to revert back to an image that isn’t signed from an image that is signed and supports verification would result in the following message:

This software image does not contain a digital signature and cannot be validated as originating from HP. You may bypass this validation by using the 'allow-no-signature' option. Please see www.hp.com/networking/swvalidation for information about which versions of software contain digital signatures.

When you use the `copy` command to download a properly signed image, the CLI logs the following syslog message:

```
Update: Firmware image contains valid signature.
```

Errors related to signature validation will generate one of the following log messages:

- `Update: Aborted. Downloaded file invalid.`
- `Update: Aborted. Firmware image does not contain a signature.`
- `Update: Aborted. Firmware image signature is not valid.`

### Using the CLI to Validate or Bypass a Signature Verification

**Manually Validating Software.** If necessary, you can validate software that does not support signature verification by executing the following command:

```
verify signature flash {primary|secondary}
```

If the signature is valid, the following message will be displayed:

```
Signature is valid.
```

**Bypassing Verification.** If necessary, you can use the `allow-no-signature` option to bypass signature verification. To do this, execute the `copy` command as follows:

```
copy {tftp|sftp|usb|xmodem} flash [<hostname/IP>] [<filename>] {primary|secondary} allow-no-signature
```
Software Management
Downloading Switch Documentation and Software from the Web

**Note**
The allow-no-signature option is available on switches that support non-signed legacy software releases and should be used with caution. To determine support for your switch, go to: [www.hp.com/networking/swvalidation](http://www.hp.com/networking/swvalidation).

Saving Configurations While Using the CLI

The switch operates with two configuration files:

- **Running-Config File:** Exists in volatile memory and controls switch operation. Rebooting the switch erases the current running-config file and replaces it with an exact copy of the current startup-config file. To save a configuration change, you must save the running configuration to the startup-config file.

- **Startup-Config File:** Exists in flash (non-volatile) memory and preserves the most recently-saved configuration as the “permanent” configuration. When the switch reboots for any reason, an exact copy of the current startup-config file becomes the new running-config file in volatile memory.

When you use the CLI to make a configuration change, the switch places the change in the running-config file. If you want to preserve the change across reboots, you must save the change to the startup-config file. Otherwise, the next time the switch reboots, the change will be lost. There are two ways to save configuration changes while using the CLI:

- Execute write memory from the Manager, Global, or Context configuration level.

- When exiting from the CLI to the Main Menu, press [Y] (for Yes) when you see the “save configuration” prompt:

  Do you want to save current configuration [y/n]?

**Important: Best Practices for Software Updates**

**Note**
With version K.15.01.0031 and later software, you will notice a slight change in the versioning system.

Software updates that contain significant new features and enhancements may be designated by an increment to both the major and minor release version numbers. That is, K.15.01.0031 represents a major update to software version(s) K.14.xx, and K.14.xx represents a major update to K.13.xx, and so forth. In addition, a future version (such as K.15.02.xx.xx) may represent a minor release to version K.15.01.xx.xx, but may still contain significant
Software Management
Downloading Switch Documentation and Software from the Web

changes. To mitigate against potential migration issues when performing such updates, this section documents best practices for updating the switch, including contingency procedures for rolling back to previous software versions and saved configurations.

Updating the Switch: Overview

Caution

Before you update the switch software to a new version:

- We strongly recommend that you save a copy of your config file to an external location.
- We advise against rolling back (going from a newer software version to an older software version) without copying a backup config file to the device.

If you do choose to downgrade software using your existing config file, unpredictable changes in the config file and switch behavior may occur. If booting a K.15.01.0031 or later config file into a K.14.xx or earlier versions of software, the following commands may be removed from your config file:

- Any commands that are present in K.15.01.0031 (or later) but are not present in earlier versions of software
- logging
- snmp-server
- mirror-session
- auto-tftp
- filter source-port
- fault-finder
- interface loopback

To perform an update to your switch software, follow the steps below (see “Updating the Switch: Detailed Steps” on page 8-9 for detailed steps):

1. Download the image to your TFTP server.
2. Save your current configuration (Config1) to a backup configuration file (Config2).
3. Save your current configuration to an external tftp server.
4. Backup your current running image (Primary) to the secondary image.
5. Set your secondary image to boot with Config2.
6. Download the new image to the switch’s primary image.
7. Verify that your images and configuration are set correctly.
8. Reload the switch.

After following these steps, you should end up with the following results:

- Primary image will hold the new software image you want to install (for example, K.15.01.0031)
- Secondary image will hold the image you are currently running (for example, K.14.47)
- Primary image will boot with Config1 (config file corresponding to new software version—in this example, K.15.01.0031)
- Secondary image will boot with Config2 (config file corresponding to previous software version—in this example, K.14.47)

* The current config file must be copied to Config2, or you will be unable to revert if the need arises.

**Note**

You might opt to use a different methodology in which the new software will be installed as the secondary and not the primary image, in which case you would use the commands `boot system flash secondary`, and/or `boot set-default flash secondary` to change the location of the default boot. However, since you will still need to take precautions to allow you to revert to your previous configuration, We strongly recommend that you follow the methods that are proposed in our update process. This will ensure that you can use our proposed roll back procedures should the need arise.

**Updating the Switch: Detailed Steps**

The following detailed steps shows how to update the switch software from an existing version to a significant new version (in the example provided here, from version K.14.47 to version K.15.01.0031).

1. Download the latest software image to your TFTP server from the HP networking web site.:  
   [www.hp.com/networking/support](http://www.hp.com/networking/support)

2. Save your current configuration (Config1) to backup configuration file (Config2).
   a. Before copying the config, verify the current state of your system using the `show version`, `show flash`, and `show config files` commands. For example:

   ```
 Switch1# show version
 Image stamp: /sw/code/build/btm(t4a)
 Nov 6 2009 13:20:26
   ```
Software Management
Downloading Switch Documentation and Software from the Web

K.14.47
188

Boot Image: Primary

Switch1# show flash
Image       Size(Bytes)   Date   Version
-----       ----------  -------- -------
Primary Image: 9839140   11/06/09 K.14.47
Secondary Image: 0
Boot Rom Version: K.12.20
Default Boot: Primary

Switch1# show config files

Configuration files:

<table>
<thead>
<tr>
<th>id</th>
<th>act pri sec</th>
<th>name</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>*</td>
<td>config1</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

b. Create a backup configuration file and verify the change.

Switch1# copy config config1 config config2
Switch1# show config files

Configuration files:

<table>
<thead>
<tr>
<th>id</th>
<th>act pri sec</th>
<th>name</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>*</td>
<td>config1</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>config2</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

3. Save the current config to a tftp server using the copy tftp command. For example:

Switch1# copy startup-config tftp 10.1.1.60
Switch1_config_K_14_47.cfg
Note

This step is necessary because HP switches do not support roll back (going from a newer software version to an older software version) without the ability to copy a backup config file onto the device.

4. Backup your current running image (primary) to the secondary image.

   Switch1# copy flash flash secondary

   Switch1# show flash

   Image          Size(Bytes)   Date   Version
   ------         ----------  -------- -------
   Primary Image  : 9839140   11/06/09 K.14.47
   Secondary Image: 9839140   11/06/09 K.14.47
   Boot Rom Version: K.12.20
   Default Boot   : Primary

5. Set your secondary image to boot with Config2.

   Switch1# startup-default secondary config config2

   Switch1# show config files

   Configuration files:

   id | act pri sec | name
   ---+-------------+---------------------------------
   1 |  *   *      | config1
   2 |          *  | config2
   3 |             |

Note

Step 5 will enable you to revert from K.15.01.xxx to your previous image with your previous configuration just by invoking the command boot system flash secondary.

6. Download the new primary image.

   Switch1# copy tftp flash 192.168.1.60 K_15_01_0031.swi primary
   The Primary OS Image will be deleted, continue [y/ n]?

   3
Software Management
Downloading Switch Documentation and Software from the Web

At the prompt, enter y for yes, and the new image will be downloaded and written to the File system. Once tftp download has been completed you will see the following message:

Validating and Writing System Software to the Filesystem ...

7. Verify that your images and configuration are set correctly. For example, if you updated from K.14.47 to K.15.01.0031, you should see the following outputs from the switch show commands:

Switch1# show version
Image stamp:  /sw/code/build/btm(t4a)
Nov 6 2009 13:20:26
K.14.47
188
Boot Image: Primary

Switch1# show flash
Image           Size(Bytes)   Date       Version
-----           ----------  -------- -------
Primary Image   : 11537788   04/23/10 K.15.01.0031
Secondary Image :  9839140   11/06/09 K.14.47
Boot Rom Version: K.15.09
Default Boot    : Primary

Switch1# show config files

Configuration files:

id | act pri sec | name
---+-------------+---------------------------------
1  |  *   *      | config1
2  |          *  | config2
3  |             |

8. Reload the new switch image.

Switch1# reload

System will be rebooted from primary image. Do you want to continue [y/n]? y

At the prompt, enter y, for yes, and the switch will boot with the new image.
**Software Management**

**Downloading Switch Documentation and Software from the Web**

**Note**

As an additional step, we recommend saving the startup-config to a tftp server using the `copy tftp` command. For example:

Switch1# copy startup-config tftp 10.1.1.60
    Switch1_config_K_15_01_0031.cfg

**Rolling Back Switch Software**

If you have followed the update procedures documented in the previous section, you should be able to revert to your previous configuration and software version using the steps below.

**Caution**

**Long Usernames and Passwords.** Software versions K.15.01.0032 and later support the longer usernames and passwords introduced in K.14.59.

Before downgrading to a software version that does not support long usernames and passwords, use one of the following procedures:

- Using the `password` CLI command or the Web browser interface, change usernames or passwords to be no more than 16 characters in length, and without any special characters. Then execute a CLI `write memory` command (required if the `include-credentials` feature has ever been enabled).

- Clear the values using the `no password all` CLI command. Then execute a CLI `write memory` command (required if the `include-credentials` feature has ever been enabled).

- Clear password values by using the "Clear" button on the switch. Then execute a CLI `write memory` command (required if the `include-credentials` feature has ever been enabled).

  **Note:** The procedures above should be used only when downgrading from a software version that supports long usernames and passwords to a version that does not.

To roll back your switch from K.15.01.0031 to K.14.47, for example, follow the steps below:

1. Verify that your images and configuration are set correctly using the `show version, show flash, and show config files` commands.
Software Management
Downloading Switch Documentation and Software from the Web

Switch1# show version
Image stamp: /sw/code/build/btm(t5a)
    Apr 23 2010 05:43:42
    K.15.01.0031
    67
Boot Image: Primary

Switch1# show flash
Image           Size(Bytes)   Date   Version
-----           ----------  -------- -------
Primary Image   : 11537788  04/23/10 K.15.01.0031
Secondary Image :  9839140  11/06/09 K.14.47
Boot Rom Version: K.15.09
Default Boot    : Primary

Switch1# show config files
Configuration files:

    id | act pri sec | name
    ---+-------------+-------------------------------
      1 |  *   *      | config1
      2 |          *  | config2
      3 |             |

2. Boot the switch using the secondary image (with config2).

Switch1# boot system flash secondary
System will be rebooted from secondary image. Do you want to continue [y/n]? y

Enter y for yes, and the switch will boot from the secondary image (K.14.47, in this example) with the corresponding configuration for that software version (Config2).

Viewing or Transferring Alternate Configuration Files

Viewing or copying an alternate configuration saved to the switch will always be accomplished through the software currently running on the switch. This may result in a misleading portrayal of the configuration. For example, if a configuration is created on K.14.47 and saved as config2, and if it is then
viewed or transferred while the switch is running K.15.01.0031, it will appear as though K.15.01.0031 has converted the configuration. However, the alternate configuration file, config2, will still be intact on the switch and load properly when the switch is booted into the same software version from which the configuration file originated.

When an enhancement introduces a feature that did not previously exist in the switch, it may present several challenges to the user.

Backwards compatibility of the configuration created with a version of software that supports a new feature or parameter is not guaranteed. Software versions that did not recognize or support a particular command or parameter will not be able to interpret that line in the configuration. For this reason, it is strongly recommended that network administrators always save their configuration while still running the switch with the original software version, and with a notation indicating the software version on which the configuration was saved. For example, a user might save a configuration for a switch running K.14.47 to a TFTP server with an IP address of 10.10.10.15 as follows:

```
HP Switch-onK1447# copy running-config tftp
10.10.10.15 5406onK1447
```

If, for example, the user deems it necessary to revert to the use of K.14.47, the user can boot into it and then restore the saved config from the TFTP server.

Viewing or copying an alternate configuration that is saved to the switch flash can be accomplished only with the software that is currently running on the switch.

Here, for example, a configuration is created on K.14.47 and then saved to flash:

```
HP Switch-onK1447# copy config config2 config
K1447config <cr>
```

And later, the configuration that was created on K.14.47 is viewed while the switch is running K.15.01.0031:

```
HP Switch-onK1501# show config K1447config <cr>
```

The command output will show how the K.14.47 config would be interpreted if it were to be used by the K.15.01.0031 software. Copying the K1447config file to a TFTP server would similarly trigger an interpretation by the software performing the file transfer. Note, however, that this does not actually change the configuration. If the version is rolled back from K.15.01.0031 to K.14.47 with a command like the following (given that K.14.47 is stored in secondary flash), the K.14.xx formatted config is still intact and valid.
Software Management
Downloading Switch Documentation and Software from the Web

HP Switch# boot system flash secondary config
K1447config

This “interpretation” during a TFTP or show command execution is inherent in the architecture of the switch. When switch features change significantly (such as the move from IPv4 support to IPv6 support), there may be configuration parameters from the previous config that cannot be translated by the switch for viewing while it is running the new software. This necessitates storing configurations for each version of software to an external location, if the user would like to view the stored config prior to reloading it.
Index

Symbols
Rolling Back Switch Software ... 8-13

A
alias
  command ... 3-24
ARP
  arp age, default ... 7-7
asterisk
  meaning in show config ... 5-40

B
banner
  configuring ... 1-6
  default ... 1-4
  exec option ... 1-9
  non-default ... 1-5
  non-interactive cmd mode ... 1-10
  operation ... 1-4
  redundant management ... 1-5
  user-configurable ... 1-9
basic switch configuration
  IP address ... 1-3
  manager password ... 1-2
  subnet mask ... 1-3
  Switch Setup screen ... 1-2
Best Offer ... 5-63
boot
  See also reboot.
boot command ... 5-2, 5-28
Bootp
  automatic switch configuration ... 1-1
  Bootp table file ... 7-14
  Bootptab file ... 7-14
  operation ... 7-12, 7-14
  server ... 7-2
  using with Unix systems ... 7-14
  See also DHCP.
Bootp/DHCP differences ... 7-13

C
Clear + Reset button combination ... 5-47
Clear button ... 4-6
CLI
  accessing from menu console ... 2-7
  context configuration level ... 3-4
  global configuration level ... 3-4
  Help ... 3-10
  interactive mode ... 3-17
  keystroke shortcuts ... 3-27
  listing command options ... 3-7
  message types ... 3-16
  moving to or from the menu ... 3-6
  port or trunk-specific commands ... 3-12
  privilege levels ... 3-2
  using ... 3-1–3-22
  VLAN-specific commands ... 3-14
config files
  oobm ... 5-48
  SCP/SFTP transfer ... 5-50
configuration
  Bootp ... 7-14
  comparing startup to running ... 5-4
  console ... 6-1
  custom default config ... 5-8
  DHCP Option 66 ... 5-61
  DHCP, Best Offer ... 5-63
  DHCP/Bootp ... 1-1
  factory default ... 5-7, 7-1
  file update with Option 66 ... 5-61
  file updating with Option 66 ... 5-62
  IP ... 7-1
  IP address ... 1-3
  IP address, manually ... 1-3
  manager password ... 1-2
  Option 67 ... 5-62
  permanent ... 5-5
  permanent change defined ... 5-2
  quick ... 2-7
  reboot to activate changes ... 2-12
  running-config file ... 8-7
  saving from CLI ... 8-7
  saving from menu interface ... 2-9
serial link ... 6-1
show default-config ... 5-4
startup ... 2-9
startup-config file ... 8-7
subnet mask ... 1-3
Switch Setup screen ... 1-2
system ... 6-11
Telnet access configuration ... 6-1
tftp server ... 5-61
updating the file using Option 66 ... 5-62
using Menu interface ... 2-6
viewing ... 5-4
web browser access ... 6-1
configuration file, multiple
after first reboot ... 5-39
applications ... 5-36
asterisk ... 5-40
backupConfig ... 5-37
change policy ... 5-41
Clear + Reset button combination ... 5-47
copy from tftp host ... 5-49
copy to tftp host ... 5-48
create new file ... 5-38, 5-44, 5-45
current file in use ... 5-40
default reboot from primary ... 5-42
erasing ... 5-45
memory assignments ... 5-39
memory slot ... 5-37, 5-40, 5-42
minconfig ... 5-42, 5-46
newconfig ... 5-42
oldConfig ... 5-39
override reboot policy ... 5-41
policy, override ... 5-43
power cycle ... 5-42
primary boot path ... 5-40
reboot policy options ... 5-37
reboot policy, override ... 5-41
reboot process ... 5-38
reload ... 5-43
rename config file ... 5-44
reset ... 5-42
running-config file ... 5-38
running-config file operation ... 5-37
secondary boot path ... 5-40
show config file content ... 5-41
show multiple files ... 5-40
startup-config ... 5-37
startup-config file ... 5-38
transition to multiple files ... 5-39
unable to copy ... 5-44
workingConfig ... 5-37, 5-39
xmodem from host ... 5-50
xmodem to host ... 5-50
console
Actions line ... 2-9, 2-10
configuring ... 6-1
ending a session ... 2-4
Help ... 2-8, 2-10
inactivity-timer ... 6-8
Main Menu interface ... 2-6
meaning of asterisk ... 2-9, 2-12
navigation ... 2-8, 2-9
operation ... 2-9
starting a session ... 2-3
statistics, clear counters ... 2-11
status and counters access ... 2-6
Switch Setup screen ... 1-2
console local-terminal ... 6-8
context level
global config ... 3-4, 7-10
manager level ... 3-4
moving between contexts ... 3-6
port or trunk-group ... 3-12
VLAN-specific ... 3-14
copy
multiple config file, tftp ... 5-48
custom config file ... 5-8

d
date, configure ... 6-14
default custom config file ... 5-8
default gateway ... 7-2
See also gateway.
default settings
banner ... 1-4, 1-8
baud rate, speed sense ... 6-1
boot flash, primary ... 5-27
configuration file name, switch.cfg ... 5-62
custom/serial configuration ... 6-2
default gateway, none ... 7-1
DHCP Option 66, enabled ... 5-61
flow control, XON/XOFF ... 6-1
inactivity timer, 0 minutes ... 6-1
interface access features ... 6-1
IP address, DHCP/Bootp ... 7-2
Index – 3

IP configuration features … 7-1
loopback interface, le0 … 7-16
MAC age time, 300 seconds … 6-11
system information features … 6-11
system name, switch product name … 6-11
Telnet access, enabled … 6-1
terminal type, VT-100 … 6-1
time sync method, none … 6-11
time zone, 0 … 6-11
Time-to-Live (TTL), 64 … 7-3
Web browser access, enabled … 6-1

default VLAN … 7-3

DHCP
- automatic switch configuration … 1-1
- Best Offer … 5-63
- Bootp operation … 7-12
- manual gateway precedence … 7-13
- Option 66 … 5-61

DHCP/Bootp differences … 7-13
DHCP/Bootp process … 7-13

DNS
- name, using in web browser

documentation
- latest versions … 1-vii
- release notes … 1-vii

Domain Name Server
- See DNS.

download
- TFTP … 8-2
- Xmodem … 8-3

E
enhanced secure mode … 5-14, 5-51, 5-58
erase
- config file … 5-49
- erase all zeroize … 5-26

event log
- console menu … 2-7
- Event Log Message Reference Guide … 1-vii

F
factory default configuration
- restoring … 5-7
fastboot command … 5-32
fault detection policy … 4-5
flash memory … 2-9, 5-1

flow control
terminal … 6-1

G
gateway
- configuring … 7-4
- default gateway … 7-2
- IP address … 7-3, 7-5
- manual config priority … 7-13
- on primary VLAN … 7-3
- precedence of manual gateway over DHCP/Bootp … 7-13

global config level … 7-10

H
Help
- for CLI … 3-10
- for menu interface … 2-8, 2-10

hop, router … 7-11
hostname parameter … 6-13
HP Networking
- switch documentation … 1-vii

I
inactivity-timer … 6-8
in-band
- managing the switch … 1-1

interactive mode
- Banner motd cmd … 3-19
- menu commands … 3-19

interactive mode, CLI … 3-17

IP … 7-6
- CLI access … 7-6
- configuration … 7-1
- DHCP/Bootp … 7-2
- effect when address not used … 7-12
- features available with and without … 7-12
- gateway … 7-2
- gateway (IP) address … 7-3
- menu access … 7-4
- multiple addresses in VLAN … 7-2, 7-8
- single source addressing … 7-26
- source IP address … 7-26
- source-interface command … 7-27
- subnet … 7-2, 7-8

Index – 3
subnet mask ... 7-1, 7-5
Time-To-Live ... 7-6, 7-11
TTL ... 7-6, 7-11
using for web browser interface ... 4-4
web access ... 7-11

**IP address**
Configured IP address ... 7-27
Configured IP interface ... 7-27
configuring ... 1-3
displaying source IP information ... 7-29
displaying source-interface status ... 7-27
loopback interface configuration ... 7-17
manually configure ... 7-5
multiple in a VLAN ... 7-8
outgoing interface ... 7-27
quick start ... 7-3
removing or replacing ... 7-10
setup screen ... 7-3
show management command ... 7-6
single source ... 7-26
source IP address ... 7-26
source IP with debug
debug
source IP address ... 7-32
source IP with radius ... 7-32
source IP with tacacs ... 7-32
source-interface option ... 7-26

**IP Preserve**
DHCP server ... 7-21
overview ... 7-21
rules, operating ... 7-21
summary of effect ... 7-24

**K**
kill command ... 6-9

**L**
link, serial ... 6-1
loopback interface
benefits ... 7-16
configuration ... 7-17
default ... 7-16, 7-19
displaying configuration ... 7-18
in OSPF area ... 7-17
multiple interfaces supported ... 7-16
lost password ... 4-6

**M**
MAC address ... 7-14
manager access ... 3-4, 3-5
manager password ... 4-5
manager privileges ... 3-4, 3-5
memory
flash ... 2-9, 5-1
startup configuration ... 2-9

**menu interface**
configuration changes, saving ... 2-9
moving to or from the CLI ... 3-6
See also console.

**message**
types ... 3-16

**module**
not present with stacking ... 2-14, 3-28
module not present ... 2-14, 3-28
multinetting ... 7-2, 7-8
See also ACLs.

**multiple configuration file**
See configuration file, multiple.

**O**
oobm
telnet ... 6-5
telnet-server ... 6-4
tftp traffic ... 5-48, 5-49
transferring files ... 5-48
web-management ... 6-7

**operator access** ... 3-3, 3-5
operator password ... 4-5
operator privileges ... 3-3, 3-5
Option 66, DHCP ... 5-61

**OSPF**
using loopback interface as router ID ... 7-17

**P**
password ... 4-5
cuplet ... 2-6
delete ... 4-6
if you lose the password ... 4-6
lost ... 4-6
manager ... 3-3
operator ... 3-3
setting ... 4-6
passwords
configuring ... 1-2

**PCM**
starting web browser ... 4-4

**port**
default loopback interface ... 7-19
displaying loopback interface ... 7-18
loopback interface configuration ... 7-16, 7-17
numbering with stacking ... 2-13, 3-28

**privilege levels** ... 3-2

**Q**
quick configuration ... 2-7

**R**
reboot
actions causing ... 5-2
faster boot time ... 5-32
from secondary flash ... 5-31
obtaining faster reboot time ... 5-28
scheduling remotely ... 5-33
via menu console ... 2-7
via menu interface ... 2-9, 2-11
See also boot.

redo, command description ... 3-22

**reload** ... 5-2
command ... 5-28
modules (5400, 8200) ... 5-34

**remote session, terminate** ... 6-9
repeat, command description ... 3-23
reset
operating system ... 2-11

**Reset button** ... 5-2

**router**
gateway ... 7-5

**router, hop** ... 7-11

**running-config**
show for VLANs ... 5-51
viewing ... 5-4
See also configuration.

**running-config file** ... 8-7

**S**
scheduled reboot ... 5-33

**SCP/SFTP**
transfer of config files ... 5-50

secure mode, enhanced ... 5-14, 5-51, 5-58
security
Clear button ... 4-7
privilege levels in CLI ... 3-2
show
telnet ... 6-5

**SNTP**
manual config priority ... 7-13
Software verification ... 8-5

**SSH**
session timeout ... 6-5

**stacking**
member ID ... 2-13, 3-28
module not present ... 2-14, 3-28
port designations ... 2-13, 3-28

**starting a console session** ... 2-3

**startup-config**
show for VLANs ... 5-58
viewing ... 5-4
See also configuration.

**startup-config file** ... 8-7

**statistics** ... 2-6
clear counters ... 5-18

status and counters
access from console ... 2-6

**subnet** ... 7-8

**subnet mask** ... 7-4, 7-5
See also IP masks.

**subnet mask, configuring** ... 1-3

**switch console**
See console.

**switch setup menu** ... 2-7
**Switch Setup screen** ... 1-2
configuring a subnet mask ... 1-3
configuring an IP address ... 1-3

**system configuration screen** ... 6-11

**T**
Telnet
connecting to switch ... 2-3
domain name address ... 6-5
hostname ... 6-5
ipv6 address ... 6-5
oobm ... 6-5
outbound ... 6-5
session timeout ... 6-5
show command ... 6-5
switch-num ... 6-5
terminate session, kill command ... 6-9
telnet
NAWS ... 6-6
negotiating window size ... 6-6
terminal access, lose connectivity ... 6-8
terminal type ... 6-1
terminate remote session ... 6-9
time server ... 7-2
time zone ... 6-11, 6-14
time, configure ... 6-14
TimeP ... 7-2, 7-4
manual config priority ... 7-13
Time-To-Live ... 7-3, 7-4, 7-5, 7-11
on primary VLAN ... 7-3
See also TTL.
TTL ... 7-3, 7-4, 7-5, 7-6
IP ... 7-11
manual config priority ... 7-13
on primary VLAN ... 7-3
See also Time-To-Live.
tty=ansi ... 6-8

U
Unix, Bootp ... 7-14

V
Viewing or Transferring Alternate Configuration Files ... 8-14
virtual interface
See loopback interface
VLAN
Bootp ... 7-14
configuring Bootp ... 7-14
ID ... 3-14
IP ... 7-3
multinet ... 7-2
multinetting ... 7-2, 7-8
multiple IP addresses ... 7-2, 7-8
primary ... 7-2
reboot required ... 2-7
subnet ... 7-2, 7-8
support enable/disable ... 2-7
VLAN ID
See VLAN.
VT-100 terminal ... 6-1

W
warranty ... 0-ii
web agent
disabling access ... 4-1
enabled parameter ... 4-1
web browser interface
access configuration ... 6-1
access parameters ... 4-5
access security ... 6-1
disable access ... 4-1
enabling ... 4-4
fault detection policy ... 4-5
first-time install ... 4-5
Java applets, enabling ... 4-4
password lost ... 4-6
password, setting ... 4-6
security ... 4-1, 4-5
standalone ... 4-4
system requirements ... 4-4
web-management
listen, oobm ... 6-7
oobm ... 6-7
write memory
effect on menu interface ... 2-12
redundant management ... 5-5

X
Xmodem OS download ... 8-3

Z
zeroization
file storage ... 5-25
flash ... 5-25
zeroize
file storage ... 5-26
from ROM console ... 5-26
management modules ... 5-26
redundant MM ... 5-27
with HA ... 5-27
Technology for better business outcomes

To learn more, visit www.hp.com/networking

© Copyright 2012 Hewlett-Packard Development Company, L.P.

The information contained herein is subject to change without notice. The only warranties for HP products and services are set forth in the express warranty statements accompanying such products and services. Nothing herein should be construed as constituting an additional warranty. HP will not be liable for technical or editorial errors or omissions contained herein.

November 2012

Manual Part Number
5998-3892