

Linux
Software Developer's Kit (SDK)

User Guide

Part Number 900-548
Revision D March 2011

EDS1100/2100

Linux Software Developers Kit (SDK) User Guide 2

Copyright & Trademark

© 2011 Lantronix. All rights reserved. No part of the contents of this book may be transmitted or
reproduced in any form or by any means without the written permission of Lantronix. Printed in
the United States of America.

Linux is a registered trademark of Linus Torvalds. µClinux is a registered trademark of Arcturus
Networks Inc. Coldfire is a registered trademark of Freescale Semiconductor, Inc. Ubuntu is a
registered trademark of Canonical Ltd. The Fedora trademark is a trademark of Red Hat, Inc.

Warranty

For details on the Lantronix warranty replacement policy, please go to our Web site at
www.lantronix.com/support/warranty.

Contacts

Lantronix Corporate Headquarters

167 Technology
Irvine, CA 92618, USA

Phone: 949-453-3995
Fax: 949-450-7249

Technical Support

Online: www.lantronix.com/support

Sales Offices

For a current list of our domestic and international sales offices, go to the Lantronix Web site at
www.lantronix.com/about/contact.

Disclaimer

This product has been designed to comply with the limits for a Class B digital device pursuant to
Part 15 of FCC and EN55022:1998 Rules when properly enclosed and grounded. These limits
are designed to provide reasonable protection against radio interference in a residential
installation. This equipment generates, uses, and can radiate radio frequency energy, and if not
installed and used in accordance with this guide, may cause interference to radio
communications.

The information in this guide may change without notice. The manufacturer assumes no
responsibility for any errors that may appear in this guide.

For the latest revision of this product document, please check our online documentation at
www.lantronix.com/support/documentation.

Revision History

Date Rev. Comments
5/09 A Initial Document
9/09 B Updated for the XPort Pro support.
6/10 C Updated for SDK Version 2.0 and support for EDS 1100/2100
3/11 D Updated SDRAM information.

http://www.lantronix.com/support/warranty.html�
http://www.lantronix.com/support�
http://www.lantronix.com/about/contact�
http://www.lantronix.com/support/documentation�

Linux Software Developers Kit (SDK) User Guide 3

Contents
Copyright & Trademark ... 2

Warranty .. 2

Contacts ... 2

Disclaimer .. 2

Revision History ... 2

List of Figures .. 6

List of Tables ... 6

1. Overview 8

Hardware Specifications .. 9

Software ... 9

Terms and Abbreviations ... 10

2. Installing the SDK 11

Host Requirements .. 11

Linux Distributions ... 11

Host TFTP Server Configuration ... 14

CD Contents .. 15

Installation .. 16

Installed Directories ... 18

3. dBUG Boot loader 19

Introduction .. 19

Installing dBUG .. 19

Basic Configuration ... 21

Boot Failure Detection ... 23

Silent Boot Option .. 23

Restoring Ethernet Address .. 23

Dual Bank .. 23

dBUG Command Summary ... 24

dBUG Set Command Options ... 24

dbug-config Linux Utility .. 25

Netcon ... 26

Contents

Linux Software Developers Kit (SDK) User Guide 4

4. Supported File Systems 27

Introduction .. 27

ROMFS .. 27

JFFS2 .. 28

NFS .. 29

5. Flash Partitioning 32

Intro to Partitioning .. 32

Dual Bank .. 32

Default Flash Memory Map for MatchPort AR, EDS1100, and EDS2100 33

Default Flash Memory Map for XPort Pro ... 34

kernel + ROMFS root + blank JFFS2 .. 36

kernel + ROMFS root, preserving the JFFS2 partition .. 37

kernel + JFFS2 root ... 38

kernel + ROMFS root + JFFS2 + AUFS .. 39

Custom Layout .. 39

6. Building µClinux 42

Configuration Profiles .. 42

Kernel and Application Options ... 43

Building .. 46

7. µClinux Startup Scripts 48

Introduction .. 48

etc/inittab ... 48

etc/init.d/rcS ... 48

etc/start .. 48

8. µClinux Networking 49

Introduction .. 49

DHCP ... 49

Static Address Configuration ... 49

DNS ... 49

inetd ... 50

telnetd .. 50

ftpd ... 50

dropbear .. 50

axhttpd ... 50

mii-tool ... 50

Contents

Linux Software Developers Kit (SDK) User Guide 5

ifconfig ... 50

mDNSResponder .. 50

9. BusyBox 51

Intro to BusyBox .. 51

Enabling/Disabling Utilities .. 51

10. Sample Applications 54

Intro to Sample Applications .. 54

s2e (Serial to Ethernet) .. 55

s2e-ssh .. 56

s2e-ssl ... 57

s2e-gpio ... 58

cpm (CP Manager) .. 59

LED .. 61

Check the Process Stack .. 61

Adding a New Application .. 62

11. VIP Access Software 63

Introduction .. 63

Enable VIP Access Software ... 63

Register the device on DSM .. 63

Bootstrap ... 63

Demo application ... 63

12. Profiling & Debugging 66

Introduction .. 66

gdbserver ... 66

syslog ... 66

iperf .. 67

Other Profiling and Debugging Utilities ... 67

13. Firmware Updates 68

Introduction .. 68

Firmware Updates by File System .. 68

Lantronix’ Sample Update Process Implementation ... 68

14. Resources 72

Lantronix Open Linux SDK Forum .. 72

Links to Related Web Sites ... 72

A. Important Configuration Switches 73

Contents

Linux Software Developers Kit (SDK) User Guide 6

B. Differences Between µClinux and Standard Linux 75

C. Troubleshooting 76

Technical Support .. 76

List of Figures
Figure 2-1. Values .. 14

Figure 3-1. DeviceInstaller Window ... 19

Figure 3-2. Firmware Upgrade Window ... 20

Figure 3-3. Serial Recovery Window ... 20

Figure 3-4. Serial Recovery Status Window Example for a MatchPort AR 21

Figure 3-5. Serial Recovery Results Window .. 21

Figure 3-6. dBug Configuration Window .. 22

Figure 3-7. Output from dbug-config program ... 25

Figure 5-1. Flash Layout – MatchPort AR, EDS1100, and EDS2100 ... 33

Figure 5-2. Flash Layout – XPort Pro .. 34

Figure 6-1. uClinux Kernel/Library/Defaults Window ... 43

Figure 6-2. uClinux Customize Application/Library Settings Window .. 44

Figure 6-3. uClinux Save Configurations Window ... 44

Figure 6-4. uClinux Save Configurations Window ... 45

Figure 6-5. uClinux Distribution Configuration Window ... 45

Figure 9-1. uClinux Distribution Configuration Window ... 51

Figure 9-2. uClinux Kernel/Library/Defaults Selection Window ... 52

Figure 9-3. uClinux Save Settings Window.. 52

Figure 9-4. uClinux BusyBox Selection Window .. 53

Figure 9-5. uClinux BusyBox Configuration Window ... 53

Figure 10-1. Lantronix Applications Configuration Window ... 54

Figure 10-2. Serial-To-Ethernet Converter Screen .. 55

Figure 10-3. Serial-To-Ethernet Tunnel Setup Screen .. 55

Figure 10-4. Serial-To-Ethernet Tunnel Setup Screen with SSH .. 56

Figure 10-5. Serial-To-Ethernet SSH Setup Screen .. 56

Figure 10-6. Serial-To-Ethernet Tunnel Setup Screen with SSL ... 57

Figure 10-7. Serial-To-Ethernet SSL Setup Screen .. 58

Figure 10-8. Serial-To-Ethernet GPIO Setup Screen .. 59

Figure 10-9. CP Manager Interface Overview ... 61

Figure 11-1. Lantronix Applications Configuration Window ... 64

Figure 11-2. Serial-To-Ethernet VIP Setup Screen ... 65

Figure 13-1. Serial-To-Ethernet System Setup Screen ... 71

Contents

Linux Software Developers Kit (SDK) User Guide 7

List of Tables
Table 1-1. Terms and Abbreviations .. 10

Table 2-1. CD Files .. 15

Table 2-2. Pre-built Images .. 16

Table 3-1. dBug Command Summary ... 24

Table 3-2. dBug Set Command Options .. 24

Table 6-1. Configuration Profiles ... 42

Table 12-1. Other Profiling and Debugging Utilities ... 67

Table A-1. Important Configuration Switches .. 73

Table A-2. Configuration Switch Abbreviations ... 74

Linux Software Developers Kit (SDK) User Guide 8

11.. OOvveerrvviieeww
The Lantronix Linux Software Developer's Kit (SDK) is an embedded hardware and software
suite that enables Linux developers to create applications on Lantronix embedded networking
modules. Detailed instructions for installing the SDK on your host Linux system are provided in
this guide. It also describes the embedded module, its boot loader, flash partitioning schemes,
and the build environment in detail. Information about many common embedded Linux utilities
and configuration tasks is included. Sample programs, in addition to debugging and profiling
tools, are provided and described in order to assist in the application development process.

1 Overview

Linux Software Developers Kit (SDK) User Guide 9

Hardware Specifications

MatchPort AR
 Memory:

 RAM 8MB

 FLASH 8MB

 Serial Interface:

 Two COM ports (CON1 using console)

 Max baud rate 230400 bps (default
115200 bps)

 Ethernet:

 10/100 base TX with Auto Negotiation

 GPIO:

 7 pins

XPort Pro
 Memory:

 SDRAM 8/16MB

 FLASH 16MB

 Serial Interface:

 One COM port

 Max baud rate 921600 bps (default
115200 bps)

 Ethernet:

 10/100 base TX with Auto Negotiation

 GPIO:

 3 pins
(2 shared with serial driver)

EDS1100 Specs
 Memory:

 RAM 8MB

 FLASH 8MB

 Serial Interface:

 One COM port

 Max baud rate 921600 bps (default
115200 bps)

 Ethernet:

 10/100 base TX with Auto Negotiation

EDS2100 Specs
 Memory:

 RAM 8MB

 FLASH 8MB

 Serial Interface:

 Two COM ports
(CON1 using console)

 Max baud rate 921600 bps (default
115200 bps)

 Ethernet:

 10/100 base TX with Auto Negotiation

Software
 Boot loader: customized dBUG

 OS: custom µClinux distribution

 Linux Kernel: 2.6.30

1 Overview

Linux Software Developers Kit (SDK) User Guide 10

Terms and Abbreviations
Table 1-1. Terms and Abbreviations

Term Description

dBUG Linux boot loader

host Machine onto which the SDK gets installed and is used for cross-compiling for the
embedded platform

SDK Software development kit

target Embedded development module

Linux Software Developers Kit (SDK) User Guide 11

22.. IInnssttaalllliinngg tthhee SSDDKK
Host Requirements

Please make sure that at least 2.5 GB of disk space are available before installation.

Root permissions are needed for very few operations. Please refer to the following section on
‘sudo Configuration’ for details.

Linux Distributions
This SDK was validated on these Linux distributions:

Redhat-based distributions

Fedora 9, 10, 11, 12, Fedora Core 5 & 6

CentOS 5.2, 5.3, 5.4
 groupinstall 'Development Tools' (installs a lot of additional development tools not necessary

for the SDK)
or gcc, make, glibc-devel

 python

 sudo

 libacl-devel

 tftp-server or tftpd-hpa

 libtasn1-devel

 zlib-devel

 rsync

Optional but recommended packages
 openssh, openssh-clients, openssh-server

 nfs-utils

 ncurses-devel (for the ncurses-based configuration utility)

 libglade2-devel (for the GTK-based graphical configuration utility)

 qt-devel (for the Qt3-based graphical configuration utility)

Debian-based distributions

Debian Lenny 5.0.2 & 5.0.4

2 Installing the SDK

Linux Software Developers Kit (SDK) User Guide 12

Ubuntu 8.04, 8.10, 9.04, 9.10, 10.04
 build-essential

 python

 sudo

 libacl1-dev

 tftpd or tftpd-hpa

 patch

 libtasn1-3-dev

 zlib1g-dev

 rsync

Optional but recommended packages
 ssh

 nfs-kernel-server

 libncurses5-dev (for the ncurses-based configuration utility)

 libglade2-dev (for the GTK-based graphical configuration utility)

 libqt3-mt-dev (for the Qt3-based graphical configuration utility)

Other distributions

OpenSUSE 11.2
 pattern install devel_C_C++

 pattern install devel_kernel

 python

 sudo

 libacl-devel

 tftp or tftpd-hpa

 libtasn1-devel

 zlib-devel

 rsync

Optional but recommended packages
 openssh, openssh-clients, openssh-server

 nfs-utils

 ncurses-devel (for the ncurses-based configuration utility)

 libglade2-devel (for the GTK-based graphical configuration utility)

 qt-devel (for the Qt3-based graphical configuration utility)

2 Installing the SDK

Linux Software Developers Kit (SDK) User Guide 13

NOTE
If you are able to compile the Linux kernel on your host machine, you will also be able to
build the SDK images. Lantronix highly recommends that the machine also act as an
NFS-server.

sudo Configuration
Root permissions are needed for these operations that might need to be performed occasionally:

 installation of additional packages on the host

 configuring the TFTP- and NFS-servers

 creating the target file system so it can be mounted via NFS

If you plan to use the NFS functionality then we recommend making sure that the sudo package
is installed. Configure it so your user can run sudo [command] without having to provide root’s
password. This can be achieved by adding an entry for your login (in the example below: sally) or
for one of the groups you belong to (in the example below: adm) to /etc/sudoers. Beware that this
might be considered a security risk in your organization.

A sample /etc/sudoers could look like this:

/etc/sudoers

This file MUST be edited with the 'visudo' command as root.

See the man page for details on how to write a sudoers file.

Host alias specification

User alias specification

Cmnd alias specification

Defaults

Defaults !lecture,tty_tickets,!fqdn

User privilege specification

root ALL=(ALL) ALL

sally ALL=(ALL) NOPASSWD: ALL

Members of the admin group may gain root privileges

%adm ALL=(ALL) NOPASSWD: ALL

2 Installing the SDK

Linux Software Developers Kit (SDK) User Guide 14

Host TFTP Server Configuration
To transfer files from your host system to the target you may need to setup a TFTP server on
your host machine. The following steps describe how to setup a TFTP server on a Fedora based
distribution. The details of how to configure this server may vary among platforms. Consult your
distribution’s documentation for further information.

To run the following commands as root or with sudo:

1. Install the tftp-server package (rpm)

yum install tftp-server

2. Edit /etc/xinetd.d/tftp and change the value of disable to “no”.

service tftp

Figure 2-1. Values

3. Restart the xinetd service.

service xinetd restart

{

 socket_type = dgram

 protocol = udp

 wait = yes

 user = root

 server = /usr/sbin/in.tftpd

 server_args = -s /tftpboot –c

 disable = no

 per_source = 11

 cps = 100 2

 flags = IPv4

}

2 Installing the SDK

Linux Software Developers Kit (SDK) User Guide 15

CD Contents
Files
Below is a brief description of the files on the CD. Filenames printed in italic are unmodified. All
necessary modifications Lantronix has made to make them run better under the µClinux
environment are in uClinux-linux_sdk-patch-R*.tar.gz.

Table 2-1. CD Files

CD File Description

Linux_SDK_Release_Notes.txt release note

install.sh install script

Makefile Makefile

freescale-coldfire-*.bz2 cross-compile toolchain from codesourcery

mtd-utils-1.2.0.patch Memory Technology Device utilities

uClinux-dist-20090618.tar.bz2 uClinux-dist-20090618.tar.bz2

uClinux-dist-20090618-
20091129.patch.gz uClinux-dist-20090618-20091129.patch.gz

uClinux-linux_sdk-patch-R*.tar.gz Lantronix' collection of modifications to the original files

linux_sdk_host.tar.bz2 SDK host tools

netcon-terminal.tar.bz2 UDP terminal for dBUG network console

avahi-0.6.25.tar.gz free Zeroconf implementation

axTLS-1.2.4.tar.gz small SSL enabled webserver

boa-0.94.14rc21.tar.g small web server

busybox-1.13.3.tar.bz2 collection of Linux utilities optimized for embedded platforms

dropbear-0.52.tar.bz2 small SSH server

iperf-2.0.4.tar.gz network testing tool

libdaemon-0.14.tar.gz library that eases the writing of UNIX daemons

libgcrypt-1.4.5.tar.bz2 general purpose cryptographic library

libgpg-error-1.7.tar.bz2 common error values for all GnuPG components

libpcap-1.0.0.tar.gz network packet capture library

libssh-0.4.0.tar.gz library to access SSH services

mbus-0.1.2.tar.gz Modbus/TCP – RTU gateway

mDNSResponder-214.3.tar.gz mDNS service responder daemon

mii-tool-1.9.1.1.tar.bz2 media-independent interface tool

openssh-5.2p1.tar.gz SSH module

openssl-0.9.8k.tar.gz SSL library

tcpdump-3.9.8.tar.gz packet analyzer

2 Installing the SDK

Linux Software Developers Kit (SDK) User Guide 16

CD File Description

vipaccess.tar.gz VIP (virtual IP) Access technology module

Documentation/ Documentations

DeviceInstaller/ Lantronix DeviceInstaller utility

dBUG/ Linux boot loader

jffs2/ files for jffs2 partitioning

scripts/ scripts for build environment

images/ pre-built images for the supported platforms

firmware_update/ files related to firmware upgrades

Pre-built Images
For each supported platform there are 6 pre-built images in <cdrom
directory>/images/<platform>.

Table 2-2. Pre-built Images

Image Description

linux.bin
Linux kernel
This is just the Linux kernel.

linuz.bin Compressed Linux kernel
This is gzip compressed linux.bin

linux.without_header
linux.bin without header
This is for dBUG of Linux SDK 1.0.0.5 or before.

romfs.img
romfs image
This is just the romfs image.

image.bin
Linux kernel + romfs.
Linux kernel and romfs image

imagez.bin
Compressed Linux kernel + romfs.
This is gzip compressed image.bin

image.without_header
image.bin without header
This is for dBUG of Linux SDK 1.0.0.5 or before.

rootfs.img

JFFS2 image (full image).
This is JFFS2 root filesystem image that built user application
directory. It's assumed that this is used without romfs (use
linux.bin for kernel).

imageu.bin Compressed Linux Kernel + uncompressed romfs

 Copy these files to your TFTP server directory.(e.g. '/tftpboot/')

Installation
To install software on your host machine:

1. Make sure you can get root access via sudo with your account.

2. Verify if your Linux host distribution automatically mounted the installation CD with:

2 Installing the SDK

Linux Software Developers Kit (SDK) User Guide 17

$ mount | grep iso9660

 If you see a line similar to:

/dev/hdc on /media/CDROM type iso9660 (ro,nosuid,nodev,uid=500)

Then the CD is already mounted. Please pay attention to the highlighted options in the
brackets behind type iso9660. If it contains noexec, you have to issue the following command
to allow the execution of scripts directly from the CD:

$ sudo mount -o remount -o exec /media/CDROM

3. Validate that the noexec flag is gone with:

$ mount | grep iso9660

 If you forget this step you will get an error message like:

bash: /media/CDROM/install.sh: /bin/sh: bad interpreter: Permission
denied

 If you have access to the ISO image of the installation CD, then you can mount the ISO file
directly with:

$ sudo mount -o loop <iso image>.iso <cdrom directory>

 If you only have the CD use:

$ sudo mount -rt isofs9660 /dev/cdrom <cdrom directory>

4. Choose an <install directory> wherever you want and have write access to. This will also be
your development directory.

$ cd <install directory>

$ <cdrom directory>/install.sh

 If you run into an error message like this:

bash: /media/CDROM/install.sh: /bin/sh: bad interpreter: Permission
denied

Then your media was mounted with the noexec option. Please check the previous paragraph
carefully about mounting the installation CD.

5. Verify that the following message appears, which indicates that everything is working fine:

Install directory [<install directory>] ? (Y/n) : Y

6. Specify the full path to the <cdrom directory>.

 If you see the questions, do the following:

You are using /bin/sh -> dash.

To use Linux SDK, you cannot use /bin/sh -> dash.

Attempt to automatically relink /bin/sh -> bash? (y/N): y

Missing needed host development packages.

Note that sudo privileges are required for installation.

Attempt to automatically install missing packages? (y/N): y

After the installation your directory structure should look as described in the following section,
Installed Directories

2 Installing the SDK

Linux Software Developers Kit (SDK) User Guide 18

Installed Directories
<install directory>

 |

 |- dBUG/ boot loader binary

 |- Documentation/ documents

 |- host/ host tools

 |- hostsrc/ source code for host tools

 |

 |- linux/ µClinux directory

 | |- images/ kernel, romfs, and jffs2 images

 | |- linux-2.6.x/ Linux kernel

 | |- uClibc C library

 | |- user Applications

 | |- lantronix Lantronix applications

 |

 |- pre-built-images/ pre built images

 |- toolchains/ toolchains directory

 |- Makefile Makefile

 |- env_m68k-uclinux environment file

Linux Software Developers Kit (SDK) User Guide 19

33.. ddBBUUGG BBoooott llooaaddeerr
Introduction

Linux on the supported platform (MatchPort AR, XPort Pro, or EDS1100 / 2100) is loaded through
two boot loader stages. The first stage is the Lantronix boot loader, which is present on both the
Evolution OS and Linux based products. The Lantronix boot loader is marked as read-only, so it
cannot be overwritten accidentally. The second stage is the dBUG boot loader, which is
responsible for loading Linux. It also contains options for downloading and flashing new kernel
and filesystem images. This section describes dBUG in more detail.

Installing dBUG
The dBUG boot loader comes pre-installed with the Linux development kits. Replacing the boot
loader image should not be necessary, but instructions for doing so are given below.

1. Connect an RS232 cable between a Windows PC COM Port (e.g. COM1 for the following
steps) and one of serial ports on the target device e.g. MatchPort AR (CON1 on the eval
board), XPort Pro (Port A on the demo board), EDS1100 (Serial), or EDS2100 (Serial 1).
Close any existing software connections to COM1.

2. Run the Lantronix DeviceInstaller Utility on the Windows computer. The most recent version
at the time of publication is provided on the installation CD for your convenience under
DeviceInstaller/. The latest version can be downloaded from our Web site:
www.lantronix.com/device-networking/utilities-tools/device-installer.

Figure 3-1. DeviceInstaller Window

3. From the Tools menu, select Advanced, then Recover Firmware.

4. Set the Port on PC to COM1.

http://www.lantronix.com/device-networking/utilities-tools/device-installer.html�

3 dBUG Boot loader

Linux Software Developers Kit (SDK) User Guide 20

5. Set the Device Model to match your embedded module (MatchPort AR, XPort Pro, or
EDS1100/2100).

6. Click Browse to select the path to the dBUG image file.

For example, the path for the MatchPort AR would be:
c:\install directory>/dBUG/dbug-R<ver>.romz

Figure 3-2. Firmware Upgrade Window

7. Click OK and follow the prompts for power cycling the target.

Figure 3-3. Serial Recovery Window

Wait for the firmware transfer to complete.

3 dBUG Boot loader

Linux Software Developers Kit (SDK) User Guide 21

Figure 3-4. Serial Recovery Status Window Example for a MatchPort AR

8. Click OK when prompted. The dBUG boot loader should now be installed on the target.

Figure 3-5. Serial Recovery Results Window

Basic Configuration
1. Connect an RS232 cable between your host computer COM1 and any of the MatchPort AR

(CON1 on the eval board), XPort Pro (Port A on the demo board), EDS1100 (Serial), or
EDS2100 (Serial 1). Serial port settings are as follows:

baud rate: 115200

data length: 8

parity: None

stop bit: 1

flow control: None

2. Turn on the target.

3. If autoboot starts, press any key to stop autoboot.

3 dBUG Boot loader

Linux Software Developers Kit (SDK) User Guide 22

4. At the dBUG> console prompt, configure the dBUG settings. Use the following instructions for
configuring dBUG to boot an image containing the kernel and a ROMFS root file system over
the network.

NOTE
A TFTP server with the image.bin file must be configured on the server with the specified
address.

dBUG> set watchdog off

dBUG> set base hex

dBUG> set baud 115200

dBUG> set autoboot net

dBUG> set server <TFTP server address(e.g. 192.168.0.10)>

dBUG> set client <target IP address(e.g. 192.168.0.1)>

dBUG> set gateway <gateway address(e.g. 0.0.0.0)>

dBUG> set netmask <network mask(e.g. 255.255.255.0]>

dBUG> set filename image.bin

dBUG> set filetype image

dBUG> set ethaddr default

dBUG> set dns <DNS server address(e.g. 0.0.0.0)>

dBUG> set kcl rootfstype=romfs

5. Display the dBUG configuration using the ‘show’ command.

Figure 3-6. dBug Configuration Window

3 dBUG Boot loader

Linux Software Developers Kit (SDK) User Guide 23

6. Issue a 'reset' at the dBUG prompt for the changes to take effect. Repeat step 3 to get back
to the dBUG prompt.

7. Clear the flash space for the JFFS2 partition using the ‘fl e’ command. The command below
erases 4MB of flash starting at address 0x00400000. This can be mounted as a JFFS2
partition from Linux.

 For the MatchPort AR or EDS1100 / 2100

dBUG> fl e 0x00400000 0x00400000

 For the XPort Pro

dBUG> fl e 0x00400000 0x00C00000

8. Download the firmware image with ‘dn’ and boot Linux using the ‘go’ command. The target
should now boot Linux via TFTP.

dBUG>dn

dBUG>go

Boot Failure Detection
When enabled, the dBUG boot failure counter (bootfc) parameter is incremented each time dBUG
starts booting, and reset from within Linux after a successful boot. When Linux fails to boot
successfully, bootfc will increment each boot. When bootfc reaches maxbootfc dBUG will stop
trying to boot Linux, and will await manual recovery. To enable the boot failure counter, set the
maxbootfc parameter to the desired numeric value. Set maxbootfc to 0 or ‘off’ to disable the boot
failure counter.

Silent Boot Option
The dBUG silent boot option disables both the display of dBUG boot messages, and the autoboot
countdown. To enable the silent booting perform the following:

dBUG> set silentboot on

When silent boot mode is enabled, it is still possible to break into the dBUG command line. To do
so, reset the target unit by cycling the unit's power (turning the power off and back on).
Immediately upon resetting the device, enter three ^x (Ctrl+x) characters.

Restoring Ethernet Address
To reset the Ethernet address used by dBUG and Linux back to the factory default setting,
perform the following:

dBUG> set ethaddr defaults

Dual Bank
When dual bank is disabled, Linux can use the entire flash memory for the kernel and root file
system.

When dual bank is enabled, flash is divided into two banks. Linux boots using a bank and keeps
another bank unused. The second bank is used automatically during a firmware upgrade and
provides redundant flash storage space that is useful in recovery scenarios when firmware
upgrade fails. For more information about Flash mapping, see Chapter 5 Flash Partitioning.

3 dBUG Boot loader

Linux Software Developers Kit (SDK) User Guide 24

To use dual bank:

1. Disable dual bank.

dBUG> set bootbank single

2. Enable dual bank and use bank 1 as boot bank.

dBUG> set bootbank 1

3. Enable dual bank and use bank 2 as boot bank.

dBUG> set bootbank 2

dBUG Command Summary
Table 3-1. dBug Command Summary

Command Description

dnfl download and write a kernel containing image file to flash

dn download an image file into RAM

fl write ‘w’ or erase ‘e’ flash

gfl boot from flash

go boot from RAM

help display available commands and their descriptions

set set dBUG configuration option

show display dBUG configuration

reset reset device

dBUG Set Command Options
Table 3-2. dBug Set Command Options

Option Values Description

watchdog on|off Enable/disable watchdog timer.

silentboot on|off Enable/disable dBUG silent booting.

netcon on|off Enable/disable netcon (see Netcon section below)

tftpsvr on|off Enable/disable TFTP server to allow firmware
update pushes

base hex|dec|bin|oct|unknown Radix of numerical arguments

baud 9600|19200|38400|… Serial baud rate.

autoboot stop|net|flash Boot source after reset, if any.

server <host IP> IP address of TFTP server to load image from.

client <board IP> IP address to be used by target. "0.0.0.0" for
BOOTP

gateway <gateway IP> IP address of gateway (default router).

netmask <netmask> Subnet mask to be used by target.

3 dBUG Boot loader

Linux Software Developers Kit (SDK) User Guide 25

Option Values Description

filename <filename> File path for image transfer via TFTP.

filetype <srec|coff|elf|image> File image type. Only "image" is supported.

ethaddr <aa:bb:cc:dd:ee:ff>|default Ethernet MAC address. "default" resets the MAC to
factory default.

dns <dns IP> IP address of DNS server.

bootfc reset Reset boot failure counter

maxbootfc <count>|0|off Value of max boot failure count. "0" or "off" to
disable.

kcl <commands>|erase Kernel command line options.

romfs_flash on|off Enable/disable XIP for ROMFS

bootbank single|1|2 Enable/disable Dual bank

safebank reset Firmware upgrade status

dbug-config Linux Utility
The dbug-config program is a Linux utility for viewing and updating the dBUG configuration
parameters. To display the current dBUG settings, run dbug-config with no arguments. To change
settings run dbug-config with the setting name as the first argument and its new value as the
second. Multiple attribute value pairs may be combined with the dbug-config command line.
Values containing spaces must be enclosed within double quotes.

Figure 3-7. Output from dbug-config program

3 dBUG Boot loader

Linux Software Developers Kit (SDK) User Guide 26

Netcon
The netcon network console program allows dBUG console access over the network. This is
useful in situations where the device (MatchPort AR, XPort Pro, or EDS1100 / 2100) is remote, or
when the console is otherwise unavailable. The path to the netcon client program in the SDK is
<install_directory>/host/usr/sbin/netcon.

By default the dBUG netcon server is active during the autoboot countdown and when the dBUG
shell is active. This includes the failure recovery case where the max boot failure count has been
triggered (if maxbootfc is enabled).

To connect to the dBUG netcon server:

4. Issue the following command on the host system.

$ netcon <target-ip>

5. Press Enter to get the dBUG prompt. If this does not work, it may be necessary to reset the
target, and press enter repeatedly within the netcon client session until the dBUG prompt
appears. The netcon program uses the connectionless UDP protocol, which makes it
possible for a session to persist across target resets.

6. Press the ESC key to exit the netcon session.

Disabling netcon
In some situations it may be desirable to disable netcon access for security reasons.

 To disable netcon, issue the following command at the dBUG prompt.

dBUG> set netcon off

The change will take effect after the next reset. Use 'set netcon on' to re-enable netcon access.

Updating the Target IP Address with netcon
When the target's MAC address is known and its IP address is unknown, it is possible to update
the target's IP address using netcon. Note that the host system must be on the same subnet as
the target for this to work. The procedure for doing this is given below.

1. Set a static arp entry on the host, associating it's MAC address with the new IP address. Note
that the arp syntax may differ depending on the platform. Consult the arp man page on your
host machine for the exact syntax

$ /sbin/arp -s <new-IP> <target-MAC-address>

2. Start the netcon client.

$ netcon <new-IP>

3. Power on the target and press the Enter key repeatedly within the netcon client session.
Once the dBUG prompt appears, the IP address will have been updated. Note that the
updated IP will be lost upon a reset unless the 'set client <target-IP>' command is executed
to write the new value to flash.

Linux Software Developers Kit (SDK) User Guide 27

44.. SSuuppppoorrtteedd FFiillee SSyysstteemmss
Introduction

Linux supports a wide range of file systems. Most of them were created with certain
characteristics in mind: high performance, reliability, compatibility with other operating systems,
general purpose, etc.

Raw flash devices have inherently different characteristics than block devices such as hard drives
and USB flash drives:

 Flash areas have to get explicitly erased before they can be overwritten

 Erase blocks, the smallest entities that can be erased on a flash, are usually considerably
larger then sectors on hard drives

 Limited number of rewrites (memory wear)

To address these constraints numerous file systems for raw flash devices exist. Among the most
popular are:

 ROMFS

 JFFS2

 CRAMFS

 SQUASHFS

ROMFS and JFFS2 are supported in this SDK and described in detail below. Both CRAMFS and
SQUASHFS are read-only file systems that support compression. They are not currently
supported in this SDK since they are not part of the standard Linux kernel as of version 2.6.30. It
should be relatively straightforward for the adventurous to add support for them.

The home page of the maintainers of JFFS2 (www.linux-mtd.infradead.org) provides excellent
information about raw flash devices.

ROMFS
What Does ROMFS Offer
ROMFS is the default file system for the µClinux distribution. It is a read-only uncompressed file
system with minimal overhead.

The boot loader copies or decompresses the Linux kernel and the ROMFS into RAM (if
romfs_flash is disabled) before jumping into the kernel. This has a few implications:

 Since the root file system and the kernel are in RAM they can be easily overwritten on the fly
by the firmware update process (unless ROMFS is executed from flash fr).

 Only applications that need to run all the time should be kept in ROMFS because everything
consumes valuable RAM space.

 This may compensate easily for the waste of RAM if multiple instances of an application run
at the same time.

http://www.linux-mtd.infradead.org/�
http://www.linux-mtd.infradead.org/�

4 Supported File Systems

Linux Software Developers Kit (SDK) User Guide 28

 ROMFS being a read-only file system, makes it easy to guarantee its integrity during runtime.
On the other hand, all variable data like configuration files that might need to be updated
during runtime need to be stored on a separate file system.

 All applications in ROMFS can be run with XIP: eXecute In Place (set romfs_flash to on in
dBug) – see (www.ucdot.org/article.pl?sid=02/08/28/0434210&mode=thread)

All applications in the distribution get compiled with the XIP flag set by default.

Configure the Boot Loader for ROMFS as Root Partition
To tell µClinux kernel to look for a ROMFS root file system, the kernel command line (kcl) has to
be set accordingly. To validate this, boot the target into dBUG and issue the following:

dBUG> show

 watchdog: on
 silentboot: off
 romfs_flash: off
 bootbank: Single
 safebank: 0
 netcon: on
 tftpsrv: on
 base: 16
 baud: 115200
 autoboot: Stop at prompt
 server: 172.19.239.1
 client: 172.19.239.77
 gateway: 172.19.0.1
 netmask: 255.255.0.0
 filename: /tftpboot/image.bin
 filetype: Image
 ethaddr: 00:20:4A:80:8C:7E
 dns: 172.19.1.1
 bootfc: 0
 maxbootfc: off
 kcl: rootfstype=romfs

If kcl is not set to rootfstype=romfs it can be fixed by issuing the command

dBUG> set kcl rootfstype=romfs

and the target will try to mount the ROMFS.

JFFS2
What Does JFFS2 Offer
JFFS2 is a sophisticated writeable log-structured file system that supports wear-leveling. JFFS2
does not support XIP. One disadvantage of having a JFFS2 root file system is that it is extremely
difficult to upgrade the firmware from within Linux without sufficient flash space (see Chapter 13
Firmware Updates). At minimum, the configuration files should be stored in a separate file system
that does not get overwritten by a firmware update.

UBIFS, LogFS, and YAFFS are promising new file systems trying to become the heir to JFFS2.
They attempt to resolve many of its shortcomings.

http://www.ucdot.org/article.pl?sid=02/08/28/0434210&mode=thread�

4 Supported File Systems

Linux Software Developers Kit (SDK) User Guide 29

Configure the Boot Loader for JFFS2 as Root Partition
To tell µClinux kernel to look for a JFFS2 root file system, the kernel command line (kcl) has to be
set accordingly. To validate this, boot the target into dBUG and issue the following command:

dBUG> show

 watchdog: on
 ...
 kcl: rootfstype=romfs

If kcl is not set to “noinitrd rw rootfstype=jffs2 root=/dev/mtdblock5” it can be fixed by issuing the
command

dBUG> set kcl noinitrd rw rootfstype=jffs2 root=/dev/mtdblock5

and the target will try to mount its root file system from the JFFS2 partition.

NFS
µClinux comes with support for mounting directories from a remote computer via NFS. This can
be very useful in many scenarios:

 To speed up development: mount the development directory on the target from the host to
eliminate time consuming manual transfer of the compiled files via ftp or scp.

 To save data permanently (e.g. for logging or backing up data to a server)

Be aware that most sample profiles provided by Lantronix do not include support for NFS to save
precious RAM. Depending on the chosen profile, you might have to activate the relevant
configuration switches in the Linux kernel:

 CONFIG_NFS_FS

 CONFIG_NFS_V3

 CONFIG_NFS_COMMON

 CONFIG_IP_PNP_DHCP (optional)

 CONFIG_IP_PNP_BOOTP (optional)

NFS as root File System – The Option for Development
Mounting the whole root file system via NFS can be a great time saver. Without it, a typical
development cycle would look like this:

1. Make a minor change to an application.

2. Create a new firmware image.

3. Flash it to the device (MatchPort AR, XPort Pro, or EDS1100 / 2100).

4. Reboot.

5. Validate the changes.

Consequently the developer would waste productive time with tedious tasks. Thus, we
recommend using the NFS as a root file system during development and debugging. This allows
the developer to try out the changes on the device as soon as they are compiled. If none of the
core components (kernel and BusyBox) were modified, the target does not even have to be
rebooted.

4 Supported File Systems

Linux Software Developers Kit (SDK) User Guide 30

All details can be found in <install-dir>/linux/linux-
2.6.x/Documentation/filesystems/nfsroot.txt

There are a few onetime steps involved to enable this mode as identified below:

µClinux kernel configuration
CONFIG_ROOT_NFS needs to be enabled in the kernel configuration. If a BOOTP or DHCP server
is available on your network you might want to enable CONFIG_IP_PNP_BOOTP or
CONFIG_IP_PNP_DHCP as well.

dBUG Configuration
Within dBUG, the kernel command line kcl needs to be set for NFS.

You have 2 options: use a fixed IP address or enable DHCP or BOOTP in the kernel.

 Static IP

For example, if one of the host network cards is configured with an IP of 192.168.3.1 and the
SDK is installed under <install-dir>/, then the target IP should be 192.168.3.88. Set the kcl using
the following command:

NOTE:
The following code must be entered as one line.

dBUG> set kcl noinitrd rw root=/dev/nfs
ip=192.168.3.88:255.255.0.0:192.168.3.1:::eth0
nfsroot=192.168.3.1:<install-dir>/linux/nfs

 Dynamic IP

If a DHCP server is running on host, it can be used by performing the following:

1. Enable CONFIG_IP_PNP_DHCP in the kernel.

2. Set kcl noinitrd rw root=/dev/nfs ip=bootp
nfsroot=192.168.3.1:<install-dir>/linux/nfs

NOTE:
The preceding code must be entered as one line.

Host Configuration
In order for the build process to produce a file system that can be mounted via NFS, the
developer needs to manually create a directory named 'nfs' in <install-dir>. This is the trigger for
the build process to create the NFS-mountable directory structure. The user will also need sudo
permissions without having to provide a password as described in Chapter 2: Installing the SDK

.

On the host machine, NFS server support needs to be installed and enabled. The
<install-dir> needs to be made accessible via NFS by explicitly exporting it. This can be
done with a line like

install-dir>/linux 192.168.0.0/255.255.0.0(rw, no_root_squash,
anonuid=500,anongid=500,insecure,sync,no_subtree_check)

in /etc/exports

4 Supported File Systems

Linux Software Developers Kit (SDK) User Guide 31

You will need to adjust the IP address and the netmask to match your network configuration. The
500 in the example above should reflect your user id on the host system.

Don't forget to execute “sudo exportfs –av” after modifying /etc/exports. If you do this the
first time, make sure that you can mount the exported file system on your host or a different
machine on the same network before trying to boot your MatchPort from it.

Mounting NFS File Systems During Runtime

Client Side Prerequisites
In addition to the basic kernel support for NFS please ensure that the following two options are
enabled in your build:

CONFIG_USER_BUSYBOX_FEATURE_MOUNT_NFS

CONFIG_USER_PORTMAP_PORTMAP

The kernel configuration options CONFIG_IP_PNP_DHCP and CONFIG_IP_PNP_BOOTP are not
needed for this configuration.

portmap needs to run to support user space NFS mounting. Make sure that it is running or start it
like this from the command line:

/ # portmap &

Consider including the portmap call in a startup script if needed regularly.

AUFS
AUFS is an implementation of the idea to support mounts of several file systems into one single
mount point, one overlaying each other. This might be used to cleanly separate read-only data
from variable data.

We included a snapshot of AUFS into the kernel for your convenience. To see how this can be
utilized, refer to Chapter 5 Flash Partitioning.

Linux Software Developers Kit (SDK) User Guide 32

55.. FFllaasshh PPaarrttiittiioonniinngg
Intro to Partitioning

The idea of partitioning is to optimize the usage of the available flash space to meet your
requirements. A Linux file system encompasses many files with different characteristics. There
are binaries and data files. Some of them are crucial for the operation of the system all the time,
while some need to be available in certain conditions only. Most files do not need to (and must
not) be modified, some files are important, but variable (e.g. persistent configuration files) and
then there are temporary files like logs.

Linux supports these requirements by letting the user mount different file system types into one
file system tree. Some of them were described in the previous chapter.

Ideally all crucial static files should reside on a compressed read-only file system, nice to have
ones on a separate read-only file system so they can be updated independently, variable files on
a compressed write-enabled file system, and volatile files on a RAM disk.

This luxury comes at a price:

 Each supported file system type costs scarce RAM

 Managing different file systems on one flash chip is not trivial - what do you do when file
system sizes have to be adjusted to accommodate the space requirements of a new firmware
version?

Depending on the requirements of your application you will have to make your choice between
the various tradeoffs. To keep things reasonably simple, but still extensible, we went with a rather
minimalist default flash layout.

Dual Bank
Flash Partitioning depends on the Dual Bank setting of dBUG (single|1|2).

When using flash in a single bank configuration, Linux can use the entire flash memory for kernel
and root file system.

When using flash in a dual bank configuration, the flash space is divided into two banks. Linux
boots using one bank and keeps another bank unused. The bootbank parameter of dBUG
specifies the bank to be used.

5 Flash Partitioning

Linux Software Developers Kit (SDK) User Guide 33

Default Flash Memory Map for MatchPort AR, EDS1100,
and EDS2100

The following figure shows the flash layout as it is hard-coded in the Linux kernel.

Figure 5-1. Flash Layout – MatchPort AR, EDS1100, and EDS2100

/dev/mtd0 (64K)
Lantronix BootLoader

/dev/mtd1 (64K)
Factory Unit Configuration (64K)

/dev/mtd5 (2 MB)
JFFS2 User Space

/dev/mtd4 (1.75 MB)
dBUG Image Header (128 Bytes)

Linux Kernel +
(Optional) ROMFS

/dev/mtd8 (64K)
dBUG Configuration Backup

/dev/mtd3 (64K)
dBUG Configuration

/dev/mtd7 (192 KB)
User Extra Space

/dev/mtd2 (64K)
dBUG (Secondary Bootloader)

/dev/mtd5 (4 MB)
JFFS2 User Space

Flash Layout – MatchPort AR, EDS1100, EDS2100
Single Bank Dual Bank – Bank 1 Dual Bank – Bank 2

/dev/mtd4 (3.75 MB)
dBUG Image Header (128 Bytes)

Linux Kernel +
(Optional) ROMFS

0x00000000

0x00040000

0x00030000

0x00020000

0x00010000

0x00200000

0x00400000

0x00440000

Reserved (Dual Bank Use)

0x00800000

/dev/mtd0 (64K)
Lantronix BootLoader

/dev/mtd1 (64K)
Factory Unit Configuration (64K)

/dev/mtd2 (64K)
dBUG (Secondary Bootloader)

/dev/mtd3 (64K)
dBUG Configuration

/dev/mtd8 (64K)
dBUG Configuration Backup

/dev/mtd7 (192 KB)
User Extra Space

/dev/mtd0 (64K)
Lantronix BootLoader

/dev/mtd1 (64K)
Factory Unit Configuration (64K)

/dev/mtd2 (64K)
dBUG (Secondary Bootloader)

/dev/mtd3 (64K)
dBUG Configuration

Reserved (Dual Bank Use)

0x00600000

0x00430000

0x00400000

/dev/mtd4 (1.75 MB)
dBUG Image Header (128 Bytes)

Linux Kernel +
(Optional) ROMFS

/dev/mtd5 (2 MB)
JFFS2 User Space

5 Flash Partitioning

Linux Software Developers Kit (SDK) User Guide 34

Default Flash Memory Map for XPort Pro
The following figure shows the flash layout as it is hard-coded in the Linux kernel.

Figure 5-2. Flash Layout – XPort Pro

/dev/mtd0 (128K)
Lantronix BootLoader

/dev/mtd1 (128K)
Factory Unit Configuration

/dev/mtd5 (4 MB)
JFFS2 User Space

/dev/mtd4 (3.5 MB)
dBUG Image Header (128 Bytes)

Linux Kernel +
(Optional) ROMFS

/dev/mtd8 (128K)
dBUG Configuration Backup

/dev/mtd3 (128K)
dBUG Configuration

/dev/mtd7 (384 KB)
User Extra Space

/dev/mtd2 (128K)
dBUG (Secondary Bootloader)

/dev/mtd5 (7.5 MB)
User Extra Space

Flash Layout – XPort Pro
Single Bank Dual Bank – Bank 1 Dual Bank – Bank 2

/dev/mtd4 (3.5 MB)
dBUG Image Header (128 Bytes)

Linux Kernel +
(Optional) ROMFS

0x00000000

0x00080000

0x00060000

0x00040000

0x00020000

0x00400000

0x00800000

0x00880000

Reserved (Dual Bank Use)

0x01000000

/dev/mtd0 (128K)
Lantronix BootLoader

/dev/mtd1 (128K)
Factory Unit Configuration

/dev/mtd2 (128K
dBUG (Secondary Bootloader)

/dev/mtd3 (128K)
dBUG Configuration

/dev/mtd8 (128K)
dBUG Configuration Backup

/dev/mtd7 (384 KB)
User Extra Space

/dev/mtd0 (128K)
Lantronix BootLoader

/dev/mtd1 (128K)
Factory Unit Configuration

/dev/mtd2 (128K)
dBUG (Secondary Bootloader)

/dev/mtd3 (128K)
dBUG Configuration

Reserved (Dual Bank Use)

0x00C00000

0x00860000

0x00800000

/dev/mtd4 (3.5 MB)
dBUG Image Header (128 Bytes)

Linux Kernel +
(Optional) ROMFS

/dev/mtd5 (4 MB)
JFFS2 User Space

(384 KB)
Unused Space

0x00860000

0x00880000

/dev/mtd5 (4 MB)
JFFS2 User Space

/dev/mtd8 (128K)
dBUG Configuration Backup

You can easily make adjustments to better fit your needs. Partition sizes and locations that
should not be altered are the first 4 flash areas. They are essential to be able to boot and
configure the Linux kernel. Additional partitions can be added, and existing ones can be
increased or shrunk (e.g. to adjust the space reserved for the kernel and ROMFS).

Please keep in mind, that some of the utilities like dbug-config and firmware update depend on
the partition names and won’t work anymore if you rename the partitions without adjusting those
utilities.

The partition definitions can be found in linux-2.6.x/drivers/mtd/maps/m520x.c:

static struct mtd_partition m520x_partitions_including_kernel[] = {
 {
 .name = "LTRXbloader",
 .size = 0x10000,
 .offset = 0x0,
 .mask_flags = MTD_WRITEABLE /* force read-only */

5 Flash Partitioning

Linux Software Developers Kit (SDK) User Guide 35

 },
 {
 .name = "LTRXconfig",
 .size = 0x10000,
 .offset = MTDPART_OFS_NXTBLK,
 .mask_flags = MTD_WRITEABLE /* force read-only */
 },
 {
 .name = "dBug",
 .size = 0x10000,
 .offset = MTDPART_OFS_NXTBLK,
 .mask_flags = MTD_WRITEABLE /* force read-only */
 },
 {
 .name = "dBugConfig",
 .size = 0x10000,
 .offset = MTDPART_OFS_NXTBLK,
 },
 {
 .name = "Kernel",
 .size = (DEFAULT_FLASH_SIZE / 2) - 0x40000,
 .offset = MTDPART_OFS_NXTBLK,
 .mask_flags = MTD_WRITEABLE /* force read-only */
 },
};

static struct mtd_partition m520x_romfs_in_flash_partition[] = {
 {
 .name = "Romfs",
 .size = 0, /* needs to be adjusted dynamically */
 .offset = 0, /* needs to be adjusted dynamically */
 .mask_flags = MTD_WRITEABLE /* force read-only */
 },
};

static struct mtd_partition m520x_partitions_after_romfs[] = {
 {
 .name = "UserSpace",
 .size = MTDPART_SIZ_FULL, // gets overwritten below
 .offset = MTDPART_OFS_NXTBLK
 },
 {
 .name = "WritableFlash",
 .size = MTDPART_SIZ_FULL,
 .offset = 0x40000
 }
#ifdef CONFIG_MTD_RECOVER_PARAMS
 ,
 {
 .name = "UserExtra",
 .size = 0x30000,
 .offset = 0x400000 // gets overwritten below
 },
 {
 .name = "dBugConfBackup",
 .size = 0x10000,
 .offset = 0x430000 // gets overwritten below

5 Flash Partitioning

Linux Software Developers Kit (SDK) User Guide 36

 }
#else /* CONFIG_MTD_RECOVER_PARAMS */
#ifdef CONFIG_MTD_BOOT_BANK
 ,
 {
 .name = "UserExtra",
 .size = 0x40000,
 .offset = 0x400000 // gets overwritten below
 }
#endif /* CONFIG_MTD_BOOT_BANK */
#endif /* CONFIG_MTD_RECOVER_PARAMS */
};

kernel + ROMFS root + blank JFFS2
This is the easiest deployable configuration available. The build process creates a ROMFS from
the root file system and appends the Linux kernel to it. This layout is supported in two variations -
both are created in the images/ directory per default:

 Uncompressed: image.bin (dBUG copies the image (a concatenation of kernel and ROMFS)
from flash to RAM)

 Compressed: imagez.bin (dBUG uncompresses the compressed image (a concatenation of
kernel and ROMFS) from flash to RAM)

Both files contain a small header for dBUG with a checksum and the destination address for the
image in RAM.

The advantage of copying the ROMFS image into RAM is that the flash area where it resides on
can be easily overwritten during a firmware update without interrupting normal operation of the
device since the changes won't come into effect until after the next reboot.

The provided startup script (<install-dir>/linux/linux-2.6.x/drivers/mtd/maps/m520x.c) tries to
mount the JFFS2 file system (/dev/mtd5) under /mnt/flash. Modify the script accordingly if you
want to use this flash area for other purposes (e.g. splitting it up into multiple partitions).

To convert a unit from any other flash layout to this layout:

1. Boot into dBUG and issue these commands (assuming that the network settings are properly
configured, your TFTP server on your hosts is configured to serve files from /tftpboot and
make copied the images in that location:

dBUG> dnfl /tftpboot/image.bin

or

dBUG> dnfl /tftpboot/imagez.bin

Address: 0x4001FF80

Downloading Image 'imagez.bin' from 172.19.239.1

TFTP transfer completed

Read 1255499 bytes (2453 blocks)

Must erase complete sectors (0x00080000 to 0x001BFFFF)

Continue (yes | no)? yes

......................

Flash Erase complete. 0x140000 bytes erased

Program successfully flashed...

5 Flash Partitioning

Linux Software Developers Kit (SDK) User Guide 37

2. Validate that the kernel command line is set to rootfstype=romfs:

dBUG> show

 watchdog: on

 silentboot: off

romfs_flash: off

 bootbank: Single

 safebank: 0

 netcon: on

 tftpsrv: on

 base: 16

 baud: 115200

 autoboot: Stop at prompt

 server: 172.19.239.1

 client: 172.19.239.77

 gateway: 172.19.0.1

 netmask: 255.255.0.0

 filename: /tftpboot/image.bin

 filetype: Image

 ethaddr: 00:20:4A:80:8C:7E

 dns: 172.19.1.1

 bootfc: 0

 maxbootfc: off

 kcl: rootfstype=romfs

3. Otherwise issue:

dBUG> set kcl rootfstype=romfs

4. Initialize/Erase the JFFS2 file system with:

For all platforms (Single bank configuration)

dBUG> fl e 0x00400000 0x00400000

5. And run the freshly installed new kernel + ROMFS with:

dBUG> gfl

kernel + ROMFS root, preserving the JFFS2 partition
This configuration is almost identical to the previous one except that the JFFS2 area does not get
touched. It is also the default configuration of the original µClinux distribution.

Follow the same steps as in the previous chapter but omit the flash erase command:

For all platforms (Single bank configuration)

dBUG> fl e 0x00400000 0x00400000

5 Flash Partitioning

Linux Software Developers Kit (SDK) User Guide 38

kernel + JFFS2 root
This configuration is intended to free up RAM for applications that require a considerable amount
of memory (e.g. ssh, tcpdump). These applications cannot be run from a ROMFS configuration.
One downside is that is very hard to implement a reliable firmware upgrade process for this flash
layout. It is also more prone to file system corruption of important files then ROMFS, since
everything is stored on a single write-enabled partition.

On a MatchPort AR it would look like this:

1. Download and flash the kernel image (you can use either linux.bin or the compressed version
linuz.bin)

dBUG> dnfl linux.bin

Address: 0x4001FF80

Downloading Image 'linux.bin' from 172.19.39.1

TFTP transfer completed

Read 1605760 bytes (3137 blocks)

Must erase complete sectors (0x00040000 to 0x001CFFFF)

Continue (yes | no)? yes

......................

Flash Erase complete. 0x190000 bytes erased

Program successfully flashed...

2. Download and flash the jffs2 root image to its default location 0x400000. This has to be done
in two steps. First download the JFFS2 partition image into RAM. dBUG always loads files to
this address: 0x4001FF80. Then that RAM area can be flashed to the destination address in
FLASH.

dBUG> dn rootfs.img

Address: 0x4001FF80

Downloading Image 'rootfs.img' from 172.19.39.1

TFTP transfer completed

Read 4194304 bytes (8193 blocks)

For all platform (Single bank)

dBUG> fl w 0x00400000 0x4001FF80 0x400000

..

Flash Write complete. 0x400000 bytes written

3. Validate that the kernel command line is set to noinitrd rw rootfstype=jffs2
root=/dev/mtdblock5

dBUG> show

 watchdog: on

...

 kcl: noinitrd rw rootfstype=jffs2 root=/dev/mtdblock5

5 Flash Partitioning

Linux Software Developers Kit (SDK) User Guide 39

Otherwise issue:

dBUG> set kcl noinitrd rw rootfstype=jffs2 root=/dev/mtdblock5

And run the freshly installed new kernel + ROMFS with

dBUG> gfl

kernel + ROMFS root + JFFS2 + AUFS
This variation is created when you use the AUFS profile. The instruction to get the resulting files
on the flash are identical to the ones described in the “kernel + ROMFS root + blank JFFS2”
section.

One area where this feature might be very handy is configuration files. Just think of storing a
static ip address for the device. Since the end user should be able to assign a static IP to the
device, it needs to be stored on persistent storage. The problem is that /etc resides on a read-
only file system. There are 3 possible solutions to this approach:

 Put /etc on a writeable file system - this was the approach taken in the previous section.

 Create a symbolic link for /etc/netcfg to a different file system that is write-enabled - that
approach is used by the ROMFS + JFFS2 file system layouts.

 Use a stackable file system like AUFS

Let's look into the last solution.

Here we create /etc on our ROMFS partition. But we overlay /etc with a write-enabled JFFS2
partition. That means that Linux can use the files from ROMFS unless there is a version of the
same file stored in the corresponding directory on the JFFS2 partition. For applications it looks
like /etc is a regular write-enabled file system. But the big difference to the JFFS2 only solution
we discussed in a previous section is that we always have a known good configuration in ROMFS
to which can reverted to if something goes wrong with the JFFS2 partition. By omitting the overlay
mount and since configuration and applications are cleanly separated, a firmware update is now
possible.

Let's assume we have mounted our JFFS2 partition under /usr/local.

mkdir /etc.romfs

mount -o rebind /etc /etc.romfs

This allows access to the files that are really on the ROMFS partition in /etc via /etc.romfs.

[-d /usr/local/etc] || mkdir /usr/local/etc

mount -t aufs -o br:/usr/local/etc:/etc.romfs none /etc

From now on all changes made to files in /etc are actually written to /usr/local/etc.

This is exactly how the aufs profile is implemented. It can be found in <install-dir>/linux/linux-
2.6.x/drivers/mtd/maps/m520x.c

This approach could be easily extended to overlap /bin for example. The ROMFS partition could
include all absolutely essential software and additional applications could be stored in a separate
partition. Even more layers are thinkable (JFFS2 on top of CRAMFS on top of ROMFS)

Custom Layout
It is possible to customize the flash layout by writing the image files to the desired addresses, and
modifying the kernel command line options appropriately. But the recommended approach is to
adjust <install-dir>/linux/linux-2.6.x/drivers/mtd/maps/m520x.c and recompile the kernel.

5 Flash Partitioning

Linux Software Developers Kit (SDK) User Guide 40

Let's assume you want an image consisting of the kernel followed by a JFFS2 root partition that
uses all available flash space. Perform the following steps:

1. Download and flash the kernel image

dBUG> dnfl linux.bin

Address: 0x4001FF80

Downloading Image 'linux.bin' from 172.19.39.1

TFTP transfer completed

Read 1396736 bytes (2729 blocks)

Must erase complete sectors (0x00040000 to 0x0019FFFF)

Continue (yes | no)? yes

......................

Flash Erase complete. 0x160000 bytes erased

Program successfully flashed...

2. Determine the address where the jffs2 image will go to.

Since the dnfl command output from step 1 shows that the kernel was written to
0x001CFFFF, we will have to write the jffs2 image past this address. Note that the address
must be at the start of a flash erase block. Flash erase blocks are 64KB (128KB on XPort
Pro). In this example, the minimum address we can use would be 0x00200000, though in
many cases it is a good idea to leave extra room for future upgrades of the kernel. For now
we'll just use 0x00200000.

3. The default size for the JFFS2 file system is 4MB. It is hard-coded in <install-
dir>/linux/vendors/Lantronix/<platform>/config.arch. Since we have 6MB available, we want
to make use of it. Look for the lines:

JFFS2_SIZE = 0x400000

in Config.arch and adjust the JFFS2_SIZE to 0x600000.

You need to rebuild rootfs.img to honor the last change. This can be achieved by just typing
make under linux/

4. Download and flash the jffs2 root image. The starting address used here is 0x00200000, but
it will vary depending on the feature set enabled in the kernel. The size of the jffs2 image
used here is 6MB.

dBUG> dn rootfs.img

Address: 0x4001FF80

Downloading Image 'rootfs.img' from 172.19.39.1

TFTP transfer completed

Read 6291456 bytes (12289 blocks)

For all platforms

dBUG> fl w 0x00200000 0x4001FF80 0x600000

..

Flash Write complete. 0x600000 bytes written

5 Flash Partitioning

Linux Software Developers Kit (SDK) User Guide 41

5. Since you have decided not to change the partition layout in the kernel source (maybe
changing the kernel source would require intensive testing of the whole kernel again), the
mptpart kernel command line option can be used to overwrite the partition scheme that is
hard coded in the kernel.

To do this we will need to determine the sizes in KB of the kernel and jffs2 partitions. The size
of the kernel partition here is 0x1C0000 bytes (0x180000 bytes on XPort Pro), which works
out to be 1792KB (1536KB on XPort Pro). The size of the jffs2 partition is 0x600000 bytes
(6144KB). Note that a flash partition may be larger than its corresponding image because
they must begin and end on flash erase block boundaries.

For MatchPort AR or EDS1100 / 2100

dBUG> set kcl noinitrd rw rootfstype=jffs2 root=/dev/mtdblock5
mtdparts=mpt:64k(LTRXbloader),64k(LTRXconfig),64k(bootloader),64k(dB
ugConfig),1792k(kernel),6144k(jffs2)

For XPort Pro

‘dBUG> set kcl noinitrd rw rootfstype=jffs2 root=/dev/mtdblock5
mtdparts=mpt:128k(LTRXbloader),128k(LTRXconfig),128k(bootloader),128
k(dBugConfig),1536k(kernel),6144k(jffs2)

6. And run the freshly installed new kernel + ROMFS with:

dBUG> gfl

Further details about the mtdparts kcl option can be found in (<install-dir>/linux/linux-2.6.x
/drivers/mtd/cmdlinepart.c)

Linux Software Developers Kit (SDK) User Guide 42

66.. BBuuiillddiinngg µµCClliinnuuxx
Configuration Profiles

Configuration profiles are used to configure the µClinux initial settings. The actual differences
between the provided profiles are very subtle. They differ mostly in the number of applications
that get activated and a few kernel settings. We highly encourage the user to compare them with
each other and make necessary adjustments. A profile is selected during the initial make of
µClinux but can be exchanged any time.

The profiles are located under
<install_directory>/linux/vendor/Lantronix/<platform>/profile/<profile-name>.

A table describing these profiles is given below.

Table 6-1. Configuration Profiles

PROFILE ROMFS JFFS2 NFS IPv6 BUSYBOX

default yes yes no yes normal

compact yes yes no no compact

no_ipv6 yes yes no no normal

develop yes yes yes yes normal

aufs yes yes root only no normal

shared yes yes no yes normal

The configuration profiles are comprised of the following files:

config.linux-2.6.x configuration file for the Linux kernel

config.uClibc configuration file for uClibc

config.vendor-2.6.x configuration file for user applications

The developer will be prompted to select a profile during the initial make. The profile can be
changed later with the following commands:

$ cd <install-dir>
$ make config
...
Configuration Profile
> 1. DEFAULT (LTRX_PROFILE_DEFAULT) (NEW)
 2. DEVELOPMENT (LTRX_PROFILE_DEVELOP) (NEW)
 3. NO_IPV6 (LTRX_PROFILE_NO_IPV6) (NEW)
 4. COMPACT (LTRX_PROFILE_COMPACT) (NEW)
 5. AUFS (LTRX_PROFILE_AUFS) (NEW)
 6. SHARED (LTRX_PROFILE_SHARED) (NEW)
choice[1-6?]:
...
Default all settings (lose changes) (DEFAULTS_OVERRIDE) [N/y] (NEW)y

6 Building µClinux

Linux Software Developers Kit (SDK) User Guide 43

Kernel and Application Options
The simplest way to modify the kernel and/or application options or switch to a different profile is
to run one of these commands from the installation directory.

Command Interface Type
make menuconfig ncurses/terminal window

make xconfig graphical GTK

make qconfig graphical QT3 (does not work to change kernel)

Although the look and feel for these options differ, they are identical in functionality.

1. Select Kernel/Library/Defaults Selection and press Enter.

Figure 6-1. uClinux Kernel/Library/Defaults Window

2. To modify the kernel settings, select Customize Kernel Settings, and press Y to include
features.

3. Repeat this step for Customize Application/Library Settings as desired.

6 Building µClinux

Linux Software Developers Kit (SDK) User Guide 44

Figure 6-2. uClinux Customize Application/Library Settings Window

4. At the bottom of the screen, select Exit and press Enter. Repeat this process for the parent
window.

5. When prompted to save your new kernel configuration, select Yes and press Enter.

Figure 6-3. uClinux Save Configurations Window

6. To customize the kernel selected earlier, navigate to the kernel configuration and enable or
disable the desired options. When finished, select Exit and press Enter.

6 Building µClinux

Linux Software Developers Kit (SDK) User Guide 45

Figure 6-4. uClinux Save Configurations Window

7. To customize the application/library settings selected earlier, navigate through the
configuration the menu and enable or disable the desired options. When finished, select Exit
and press Enter.

Figure 6-5. uClinux Distribution Configuration Window

8. Once the configuration options are updated, execute the make command to rebuild µClinux.

6 Building µClinux

Linux Software Developers Kit (SDK) User Guide 46

Building
To build images, perform the following on the development host:

$ cd <install directory>

$. env_m68k-uclinux

$ make

…

Vendor

> 1. Lantronix (DEFAULTS_LANTRONIX) (NEW)

choice[1]: 1

*

* Select the Product you wish to target

*

Lantronix Products

> 1. XPort_Pro (DEFAULTS_LANTRONIX_XPORT_PRO) (NEW)

 2. MatchPort_AR (DEFAULTS_LANTRONIX_MATCHPORT_AR) (NEW)

 3. EDS2100 (DEFAULTS_LANTRONIX_EDS2100) (NEW)

 4. EDS1100 (DEFAULTS_LANTRONIX_EDS1100) (NEW)

choice[1-4]: 1

Configuration Profile

> 1. DEFAULT (LTRX_PROFILE_DEFAULT) (NEW)

 2. DEVELOPMENT (LTRX_PROFILE_DEVELOP) (NEW)

 3. NO_IPV6 (LTRX_PROFILE_NO_IPV6) (NEW)

 4. COMPACT (LTRX_PROFILE_COMPACT) (NEW)

 5. AUFS (LTRX_PROFILE_AUFS) (NEW)

 6. SHARED (LTRX_PROFILE_SHARED) (NEW)

choice[1-6?]: 1

*

* Kernel/Library/Defaults Selection

*

*

* Kernel is linux-2.6.x

*

*

* Libc is uClibc

*

*

6 Building µClinux

Linux Software Developers Kit (SDK) User Guide 47

* glibc Library Configuration

*

Default all settings (lose changes) (DEFAULTS_OVERRIDE) [N/y] (NEW)

Customize Kernel Settings (DEFAULTS_KERNEL) [N/y] (NEW)

Customize Application/Library Settings (DEFAULTS_VENDOR) [N/y] (NEW)

Update Default Vendor Settings (DEFAULTS_VENDOR_UPDATE) [N/y] (NEW).

…

And then these images are made in the linux/images directory.

$ ls linux/images

image.bin image.without_header linux.bin linuz.bin romfs-inst.log
imageu.bin imagez.bin linux.without_header romfs.img rootfs.img

To make the images available for transfer to the target, copy the contents of the linux/images/
directory to your tftp boot directory. Your tftp boot directory must have write permissions enabled.
The following example assumes a tftp boot directory of ‘/tftpboot’.

$ cp linux/images/* /tftpboot

It is possible to have the build process automatically copy the image files to your tftp boot
directory. To enable this, edit linux/vendors/Lantronix/<platform>/Makefile and set the
TFTP_DIRECTORY variable to your tftp boot directory, and the
COPY_BUILD_TO_TFTP_DIRECTORY variable to ‘y’.

COPY_BUILD_TO_TFTP_DIRECTORY=y

TFTP_DIRECTORY=<your_tftp_boot_directory>

To build the root file system for NFS, perform the following:

$ mkdir linux/nfs

$ make

Linux Software Developers Kit (SDK) User Guide 48

77.. µµCClliinnuuxx SSttaarrttuupp SSccrriippttss
Introduction

Various startup scripts are called during the Linux boot process. These initialization files are
found in the build environment under
<install directory>/linux/vendors/Lantronix/<platform>/romfs_extra/.

Edit them as appropriate.

/etc/inittab
The /etc/inittab file controls the configuration for the init process. It is here that the various startup
and shutdown scripts are configured, and the console device is specified. The default /etc/inittab
file is setup so that /etc/init.d/rcS will be called at startup.

/etc/init.d/rcS
The /etc/init.d/rcS script is responsible for mounting the target’s file systems, and calling the next
stage of initialization scripts.

/etc/start
The /etc/start script is called by /etc/init.d/rcS. It calls the /etc/netstart script to initialize
networking, and various other scripts if they are present. It also calls dBUG-config to reset the
boot failure counter which was previously incremented by dBUG.

Linux Software Developers Kit (SDK) User Guide 49

88.. µµCClliinnuuxx NNeettwwoorrkkiinngg
Introduction

µClinux supports a full TCP/IP networking stack. Several networking protocols are supported
through the kernel and various shell utilities. Networking is initialized on the target through the
/etc/netstart script.

DHCP
The target can obtain an IP address automatically through the DHCP protocol. Two DHCP clients
are supported, udhcpc and dhcpcd. Udhcpc is included as part of busybox and takes up less
flash and RAM space. Dhcpcd is a standalone program with more options than udhcpc. The
/etc/netstart script will attempt to start whichever one is present, starting with udhcpc. Select the
client that best suits your needs.

Static Address Configuration
By default Linux will attempt to get an IP address through DHCP. To set a static address, perform
the following steps on the target:

1. Use the vi text editor to create and edit /etc/netcfg. Note that by default etc/netcfg is a
symlink to /usr/local/etc/netcfg. You can either delete this symlink and create /etc/netcfg, or
make sure that the path to /usr/local/etc/netcfg exists.

2. Add lines to /etc/netcfg as follows:

IPADDR=<target_ip>

NETMASK=<target_netmask>

GATEWAY=<target_gateway>

3. Reboot the target for the changes to take effect.

NOTE:
The static address in the dBUG configuration will also be updated during the reboot.

DNS
The target supports name resolution via the DNS protocol. The DNS configuration is found in
/etc/resolv.conf.

8 µClinux Networking

Linux Software Developers Kit (SDK) User Guide 50

inetd
The inetd program listens for connections to network services such as telnet, ftp, and ssh. The
/etc/inetd.conf configuration file specifies the ports to listen to, and their associated programs.
The mapping of network port numbers to names is found in /etc/services.

telnetd
The telnet daemon allows for shell connections over the network. Note that telnet sessions are
not encrypted.

ftpd
The ftp daemon waits for connections using the File Transfer Protocol (FTP). The FTP protocol
allows for copying files to and from the target.

dropbear
The dropbear program is a small footprint SSH server and client. The SSH protocol allows for
secure shell connections over the network.

axhttpd
The axhttp daemon is a small footprint web server that is part of the axTLS package. It includes
support for SSL encrypted sessions.

mii-tool
The mii-tool program allows for viewing and modifying the Ethernet port’s speed and duplex
settings.

ifconfig
The ifconfig command allows for viewing the target’s IP address, subnet mask, and MAC
address. It can also be used to configure the IP address and subnet mask at runtime. Changes
made by ifconfig will not be preserved across a system reboot.

mDNSResponder
The mDNSResponder daemon is a service that implements Multicast DNS Service Discovery for
discovery of services on the local network. It enables you to find your device (e.g. XPort Pro) if
you don’t know the IP address.

Linux Software Developers Kit (SDK) User Guide 51

99.. BBuussyyBBooxx
Intro to BusyBox

The busybox command incorporates the functionality of several common Linux utilities into a
single binary file. The utilities have been optimized for space by supporting fewer options. Flash
and RAM space have also been saved by eliminating the overhead of having multiple binary files.
Symbolic links to the busybox program are used in place of the utility binaries, as busybox uses
the calling link to determine which command to invoke.

Enabling/Disabling Utilities
The simplest way to modify the list of utilities included by busybox is to run one of these
commands from the installation directory:

 Make menuconfig (# for a ncurses/terminal window based configuration tool)

 Make xconfig (# for a graphical GTK based configuration tool)

 Make qconfig (# for a graphical QT3 based configuration tool)

Although the look and feel for these options differ, they are identical in functionality.

1. Select Kernel/Library/Defaults Selection and press Enter.

Figure 9-1. uClinux Distribution Configuration Window

9 BusyBox

Linux Software Developers Kit (SDK) User Guide 52

2. Select Customize Application/Library Settings then press Y to include features.

Figure 9-2. uClinux Kernel/Library/Defaults Selection Window

3. At the bottom of the screen, select Exit and press Enter. Repeat this process for the parent
window which opens.

4. When prompted to save your new kernel configuration, select Yes and press Enter.

Figure 9-3. uClinux Save Settings Window

5. Select BusyBox from the µClinux Distribution Configuration menu and press Enter.

9 BusyBox

Linux Software Developers Kit (SDK) User Guide 53

Figure 9-4. uClinux BusyBox Selection Window

6. Navigate the menu for each category of utilities to be modified. At each utility option to be
modified, select Y to enable, or N to disable. When finished, select Exit and press Enter.

The BusyBox options will now be updated.

Figure 9-5. uClinux BusyBox Configuration Window

7. Execute the make command to rebuild busybox within µClinux.

Linux Software Developers Kit (SDK) User Guide 54

1100.. SSaammppllee AApppplliiccaattiioonnss
Intro to Sample Applications

Lantronix provides some sample applications to demonstrate how to develop custom applications
with the SDK. These applications show examples of how to access the network, serial port and
CPs. The Lantronix sample applications are found in the SDK under linux/user/lantronix. The
libcp CP API library is also found in this directory. Descriptions of the sample applications are
provided below. Use make menuconfig to enable or disable Lantronix sample applications, and
then run make to rebuild.

Figure 10-1. Lantronix Applications Configuration Window

10 Sample Applications

Linux Software Developers Kit (SDK) User Guide 55

s2e (Serial to Ethernet)
The s2e program demonstrates serial to Ethernet tunneling and a configuration web interface.
Note that the boa web server must be enabled with ‘make menuconfig’ in order to take advantage
of the web interface.

To access the s2e settings when the s2e and boa processes are running, use your web browser
to connect to: http://<target_ip>/

Figure 10-2. Serial-To-Ethernet Converter Screen

To setup a serial to Ethernet tunnel, click Tunnel Setup under the desired serial port and
configure the tunnel settings. When finished, click Submit.

Figure 10-3. Serial-To-Ethernet Tunnel Setup Screen

If the tunnel is configured for server mode, you can now telnet to the target’s IP address at the
configured TCP port number to access the serial port.

telnet <target_ip> <tcp_port_for_tunnel>

10 Sample Applications

Linux Software Developers Kit (SDK) User Guide 56

s2e-ssh
The s2e-ssh program demonstrates serial to Ethernet tunneling with ssh. Note that this program
requires a large amount of memory, so you have to reduce memory usage which is used by any
other applications.

Figure 10-4. Serial-To-Ethernet Tunnel Setup Screen with SSH

To setup a serial to Ethernet tunnel with SSH server mode, you have to set SSH server keys at
SSH Setup Screen.

Figure 10-5. Serial-To-Ethernet SSH Setup Screen

10 Sample Applications

Linux Software Developers Kit (SDK) User Guide 57

The keys are OpenSSH PEM. Format as follows:

 RSA Private Key:

-----BEGIN RSA PRIVATE KEY-----

MIICWgIBAAKBgQCpcN0ROVbOHydDuE3/kKeS/DNq6CUEKLhZM7z/R8p7dGUwWirX

...

dE+IapyOCaRMfKPJftWUkb4/H1KEAVpfRZKFeK+Q

-----END RSA PRIVATE KEY-----

 DSA Private Key:

-----BEGIN DSA PRIVATE KEY-----

MIIBuwIBAAKBgQC89M2rttMbT5azCaxmY0szUPWlWK1T2Z2ewihJ68PoS/wqNPun

...

FyuhK3qSn3cvdvDoUdQ4

-----END DSA PRIVATE KEY-----

s2e-ssl
The s2e-ssl program demonstrates serial to Ethernet tunneling with ssl. Note that this program
requires a large amount of memory, so you have to reduce memory usage which is used by any
other applications.

Figure 10-6. Serial-To-Ethernet Tunnel Setup Screen with SSL

To setup a serial to Ethernet tunnel with SSL server mode, you have to set SSL server keys at
SSL Setup Screen.

10 Sample Applications

Linux Software Developers Kit (SDK) User Guide 58

Figure 10-7. Serial-To-Ethernet SSL Setup Screen

The keys are OpenSSL PEM Format like following.

 Certificate:

-----BEGIN CERTIFICATE-----

MIIDkjCCAvugAwIBAgIBADANBgkqhkiG9w0BAQQFADCBkzELMAkGA1UEBhMCSlAx

...

MUiNfOVv

-----END CERTIFICATE-----

 Private Key:

-----BEGIN RSA PRIVATE KEY-----

MIICXQIBAAKBgQC2QJSCGFUjsegEQbZl1ylVOi48ZcTJG1wRfyJ854V5+wpk2r7r

...

vjkwxbSeE/Qj5L3hJPrnBap5qqPBfZhe8WIqdMXxKrma

-----END RSA PRIVATE KEY-----

s2e-gpio
The s2e-gpio program demonstrates how to access and control to the device’s Configurable Pins
via the Web. To use CPs as GPIO, you have to configure the kernel. (see
CONFIG_LTRX_CPM_DEFAULT_GPIO of Appendix A Important Configuration Switches)

10 Sample Applications

Linux Software Developers Kit (SDK) User Guide 59

Figure 10-8. Serial-To-Ethernet GPIO Setup Screen

cpm (CP Manager)
The Configurable Pin Manager (cpm) provides shell level access to the device’s GPIO pins. It
also provides an example of how to use the libcp API to communicate with the CP GPIO driver.

To use CPs as GPIO, you have to configure the kernel. (see
CONFIG_LTRX_CPM_DEFAULT_GPIO of Appendix A Important Configuration Switches)

The cpm.conf configuration file is used to group CPs into bit patterns. Note that the MatchPort AR
has seven GPIO pins, whereas the XPort Pro has three of which 2 are shared with the serial
driver. The cpm.conf file is of the following format:

config cp<num[1-7]> {

 type <output|input> # direction
 state <enable|disable> # pin assign
 inverted <enable|disable> # active low or high
}

group <name> {

 type <output|input> # direction
 state <enable|disable> # group status
 bit<num[0-31]> CP<num[1-7]> # CP pin assign
}

Below is an example configuration file for creating a group called LED to control output for CP1 to
CP4

NOTE:
The XPort Pro supports only 3 GPIO pins.

[cpm.conf]

config cp1 {

type output
state enable
invert disable

10 Sample Applications

Linux Software Developers Kit (SDK) User Guide 60

}

config cp2 {

type output
state enable
invert disable

}

config cp3 {

 type output

 state enable

 invert disable
}

config cp4 {

 type output

 state enable

 invert disable
}

group LED {

 type output

 state enable

 bit0 CP1

 bit1 CP2

 bit2 CP3

 bit3 CP4
}

The cpm program can then be invoked to light all four LEDs with the following:

$ cpm -N LED -V 15

The '-N' argument is for specifying the CP group name, and the '-V' argument for specifying which
GPIOs to enable. Below is a high level diagram showing how the CP Manager interfaces with the
GPIO pins.

10 Sample Applications

Linux Software Developers Kit (SDK) User Guide 61

Figure 10-9. CP Manager Interface Overview

LED
The led program is a simple LED demo intended to demonstrate the use of the CP API library.
Run led from the shell with no arguments to observe the LED demo.

Check the Process Stack
The check the process stack (chkstk) is a tool which enables you to see the using stack size of
working process like following:

/ # chkstk

 PID STACK SIZE USED MARGIN CODESZ DATASZ

 1 404c8180 16000 1708 14292 272000 53248 (init)

 35 40548180 16000 1829 14171 272000 53248 (/sbin/syslogd)

 37 40558180 16000 5004 10996 272000 65536 (-/bin/sh)

 53 40598180 16000 2297 13703 272000 53248 (/sbin/inetd)

 67 40606000 8192 1865 6327 113792 36864 (boa)

 79 4052f000 4096 1656 2440 30240 12288 (chkstk)

10 Sample Applications

Linux Software Developers Kit (SDK) User Guide 62

Adding a New Application
To add an application, perform the following on the development host:

$ cd <install directory>/linux/user/lantronix

$ mkdir <app_dir>

- Add the source files into <app_dir>

- Sample source file (test.c)

/* Start test.c */

#include <stdio.h>

int main(void)

{

 printf("Testing 1,2,3\n");

 return 0;

}

/* End test.c */

1. Create make file as linux/user/lantronix/<app_dir>/Makefile. Use
linux/usr/lantronix/hello_world/Makefile as a reference, and adjust for your application.

2. Add application to <install directory>/linux/user/lantronix/Makefile

See hello_world rules and add in the same manner.

3. Edit <install directory>/linux/user/Kconfig

See hello_world config and add in the same manner.

4. Run make config (or menuconfig) from <install_directory/linux), and enable the application
when prompted.

Linux Software Developers Kit (SDK) User Guide 63

1111.. VVIIPP AAcccceessss SSooffttwwaarree
Introduction

VIP Access Software provides secure remote Internet access to control almost any electronic
equipment behind firewalls with ManageLinx. See the documents of ManageLinx for details.

Enable VIP Access Software
To compile and install vipaccess (VIP Access Software), enable the
CONFIG_USER_LANTRONIX_VIP_ACCESS option and then rebuild µClinux with "make
distclean" followed by "make" from the installation directory.

Register the device on DSM
To register your device on DSM, register it as DEVICELINX-DSC.

Bootstrap
VIP Access Software requires bootstrap file (bootstrap.xml). Push the bootstrap file obtained from
DSM to /usr/local/etc/bootstrap.xml on the target.

Demo application
VIP Access Demo is integrated with the s2e sample application.

To create an image with VIP Access Demo:

1. Enable CONFIG_USER_LANTRONIX_VIP_ACCESS and
CONFIG_USER_LANTRONIX_S2E_VIP.

11 VIP Access Software

Linux Software Developers Kit (SDK) User Guide 64

Figure 11-1. Lantronix Applications Configuration Window

2. Make the Linux image and boot it.

3. Connect to http://<target_ip_address>/ by Web Browser.

4. Click VIP from Menu, select the bootstrap.xml from the directory where it resides and
click Submit.

5. Toggle the VIP mode to Enable, and click Submit.

11 VIP Access Software

Linux Software Developers Kit (SDK) User Guide 65

Figure 11-2. Serial-To-Ethernet VIP Setup Screen

Your device can accept connections on TCP ports (e.g. HTTP, TELNET, s2e) via VIP, after the
VIP session is visible on DSM via its Web UI.

Linux Software Developers Kit (SDK) User Guide 66

1122.. PPrrooffiilliinngg && DDeebbuuggggiinngg
Introduction

Various tools are provided in Linux for profiling system performance and debugging applications.
These include utilities for symbolic debugging, logging, and tracking of cpu, memory, network,
and file system usage. Descriptions of many of these programs are provided below.

gdbserver
The gdbserver program can be installed on the target to aid in debugging. To compile and install
gdbserver, enable the CONFIG_USER_GDBSERVER_GDBSERVER option in
linux/vendors/Lantronix/<platform>/config.vendor-2.6.x (or use 'make menuconfig'), and then
rebuild µClinux with "make distclean" followed by "make" from the installation directory.

To start debugging an application on the target, enter the following at the Linux shell prompt:

gdbserver :<tcp_port> <app_path> <app_args>

This will make gdbserver wait on port <tcp_port> for a gdb session of the desired application.

Each application built in µClinux has an associated <app_name>.gdb file in its build directory
(typically linux/user/<app_name>). You must use the gdb executable that is compiled for the
Coldfire architecture. Under <install_directory>/toolchains/freescale-coldfire-4.3/bin/ you will find
m68k-µClinux-gdb.

To connect to the gdbserver running on the target perform the following from your host system.

m68k-µClinux-gdb <app_path>/<app_name>.gdb

target remote <target_ip>:<tcp_port>

Perform gdb commands (e.g. set breakpoints, print variables, step through the code, ...). Refer to
a gdb manual for details.

Note that by default µClinux applications are compiled with space optimization on. This
optimization can make debugging with gdb more difficult.

To disable space optimization comment out (prefix with a '#') the following line from
<install_dir>/linux/config/config.make:

COMMON_CFLAGS_OPTIMIZE = -0s

syslog
The syslog daemon is responsible for recording log messages. The Lantronix SDK uses the
syslogd functionality provided by busybox. By default the target will write syslog messages in the
/var ramdisk partion to /var/log/messages. While syslog is useful for target development, it may
be best to disable it on production units in order to reduce memory usage.

12 Profiling & Debugging

Linux Software Developers Kit (SDK) User Guide 67

iperf
The iperf program measures networking throughput between two systems. The program can be
run on the target in either client or server mode. If client mode is chosen, iperf must first be run in
server mode on the second system. With server mode, iperf must first be started on the target,
and then run in client mode on the second system.

Command Syntax:

Server Mode: iperf -s

Client Mode: iperf -c <server_ip>

Other Profiling and Debugging Utilities
Below is a list of other profiling and debugging utilities supported on the target.

Table 12-1. Other Profiling and Debugging Utilities

Utility Description

df Displays partition usage information.

dmesg Displays kernel ring buffer.

free Displays available memory statistics.

mount Set or display active partitions.

netstat Displays network connection statistics.

ping Tests network connectivity to a remote host.

ps Display list of active processes

top Displays cpu and memory usage in real time. (Enable with make menuconfig)

Linux Software Developers Kit (SDK) User Guide 68

1133.. FFiirrmmwwaarree UUppddaatteess
Introduction

Firmware updates of embedded Linux devices are usually a compromise of your requirements:

 Are online updates within Linux needed?

 Is there enough flash space to store the whole update file before starting the update?

 Is it acceptable to force the unit into an upgrade mode in which it is not responsive
otherwise?

 What should happen if the upgrade fails?

There is no one approach that fits all needs. The most desirable approach, to mimic the online
update process of Linux desktops and servers via a package management system like rpm or
dpkg does not work because those systems tend to require more resources (memory and hard
drive space for metadata) than are available on this platform.

Ipkg (http://handhelds.org/moin/moin.cgi/Ipkg) and Opkg (http://wiki.openmoko.org/wiki/Opkg) try
to provide similar tools for embedded devices. But they focus on handhelds and cell phones with
much more memory than our platform has to offer.

Firmware Updates by File System
Firmware update processes for embedded Linux devices usually are based on the idea of
replacing entire file systems at once. This comes with various pros and cons.

Pros
 Updates and their validation are easier to predict and test because complete file systems are

replaced.

 Updates can be performed offline through the boot loader.

Cons
 Changing file system sizes via updates can be complicated if not impossible. Updating active

file systems can be difficult because mounted files systems cannot be overwritten without
potentially causing harm.

Lantronix’ Sample Update Process Implementation
Overview
The firmware update process highly depends on the flash memory layout you have chosen for
your build. Lantronix provides an implementation with the following features and restrictions:

http://handhelds.org/moin/moin.cgi/Ipkg�
http://wiki.openmoko.org/wiki/Opkg�

13 Firmware Updates

Linux Software Developers Kit (SDK) User Guide 69

Features
 Same process for updates via boot loader and within Linux.

 Easily adjustable to customer’s needs.

 Disaster recovery feature available.

Restrictions
 Update from within Linux can only update kernel, ROMFS and partitions that are not

mounted.

 Update from within Linux updates 64k flash areas incrementally; so if the update process
gets interrupted, the file system will be corrupted and must be caught by disaster recovery.

 No authentication and encryption of firmware upgrade files is implemented.

 Only relatively weak CRC against firmware corruption.

The upgrade process will likely require adjustments for production devices.

Implementation
The fw-upgrade application enables you to write firmware to flash via /var/firmware.img (pipe file).
If you enable CONFIG_USER_LANTRONIX_FW_UPGRADE, this application runs automatically
on a target.

To update the firmware, write the firmware image created by makeimage2.py (see below) to
/var/firmware.img. You can write it via any protocol like TFTP, FTP or HTTP.

makeimage2.py
makeimage2.py (provided under <install_dir>/host/usr/sbin/ and on the installation CD under the
firmware_update directory) wraps (file system) images in headers with information about the
address on the flash they should be written to and concatenates them all together in a single file.
To provide a basic protection against file corruption during the transfer, each data block is
protected by a CRC.

The boot loader also expects the kernel (and optionally the ROMFS partition) to be wrapped in its
own header. makeimage2.py also adds that one to the file identified as kernel.

Below are some example invocations of the makeimage2.py script.

1. Installing a compressed linux+ROMFS image and erasing the flash area used for the JFFS2
/usr/local partition:

For MatchPort AR
makeimage2.py images/imagez.bin:kernel:0x40000:ROMFS:
erase:0x400000:-1 /tmp/uclinux-kernel-and-romfs-and-erase-jffs2-
area.bin

For XPort Pro
makeimage2.py images/imagez.bin:kernel:0x40000:ROMFS:
erase:0x800000:-1 /tmp/uclinux-kernel-and-romfs-and-erase-jffs2-
area.bin

2. Installing an uncompressed linux+ROMFS image only, keeping the JFFS2 area untouched:

For MatchPort AR
makeimage2.py images/image.bin:kernel:0x40000:ROMFS: /tmp/uclinux-
kernel-and-romfs.bin

13 Firmware Updates

Linux Software Developers Kit (SDK) User Guide 70

For XPort Pro
makeimage2.py images/image.bin:kernel:0x80000:ROMFS: /tmp/uclinux-
kernel-and-romfs.bin

3. Installing an uncompressed linux kernel and using a JFFS2 root partition:

For MatchPort AR
makeimage2.py images/linux.bin:kernel:0x40000:bin:
images/rootfs.img:jffs2:0x400000:bin: /tmp/uclinux-kernel-and-
jffs2.bin

For XPort Pro
makeimage2.py images/linux.bin:kernel:0x80000:bin:
images/rootfs.img:jffs2:0x400000:bin: /tmp/uclinux-kernel-and-
jffs2.bin

Updating via a TFTP Client
To update the target via TFTP with an image file generated by makeimage2.py (see the previous
section), perform the following steps:

1. From your host system, launch a TFTP session to the target. Note that this can be done
when the target is in dBUG with the TFTP server enabled, or when the target is running Linux
provided that the root file system is ROMFS, and a JFFS2 partition is not mounted.

$ tftp <target-ip>

2. From within the TFTP client program, set the file transfer mode to ‘octet’.

tftp> mode octet

3. Now set the timeout value to a high value. The TFTP upgrade may take some time due to
flash writes, so the timeout should be set to a suitably high value.

tftp> timeout 999999

4. Push the firmware update file to the target. Note that firmware updates must be pushed to the
/var/firmware.img.

tftp> put uclinux-kernel-and-romfs-and-erase-jffs2-area.bin
/var/firmware.img

5. Reset the target once the TFTP upgrade is complete. The target will now boot with the
updated file system(s).

Updating via a FTP Client
To update the target via FTP with an image file generated by makeimage2.py (see the previous
section), perform the following steps:

1. From your host system, launch a FTP session to the target. Note that this can be done when
the target is running Linux provided that the root file system is ROMFS, and a JFFS2 partition
is not mounted.

$ ftp <target-ip>

2. Log in to prompt (default username and password is root:root).

3. Change to binary mode.

ftp> binary
200 Type set to I.

13 Firmware Updates

Linux Software Developers Kit (SDK) User Guide 71

4. Push the firmware update file to the target. Note that firmware updates must be pushed to
/var/firmware.img.

ftp> put uclinux-kernel-and-romfs-and-erase-jffs2-area.bin
/var/firmware.img

Updating via a WEB Browser
To update the target via WEB Browser with an image file generated by makeimage2.py (see the
previous section), perform the following steps:

1. From your host system, launch an HTTP session to the target via WEB Browser. Note that
this can be done when the target is running with
CONFIG_USER_LANTRONIX_S2E_UPDATE.

Figure 13-1. Serial-To-Ethernet System Setup Screen

2. Click Browse and select the firmware file.

3. Select Update and then click Submit.

Linux Software Developers Kit (SDK) User Guide 72

1144.. RReessoouurrcceess
Lantronix Open Linux SDK Forum

The Lantronix Linux SDK forum Web site (http://forums.lantronix.com) is the primary resource to
obtain updated revisions of the SDK. The SDK and related documentation are also available via
the Downloads page (www.lantronix.com/support/downloads). Please visit the Lantronix Web site
or the Forums page to determine if a more current version of the SDK is available.

Individual forum topics are monitored by Lantronix engineers and technical support staff and may
be used to ask questions regarding any aspect of the SDK. Complete the registration process to
obtain a logon ID and post your question. If enabled in your user profile, you will receive an email
message when a response to your post is available. Other options for interacting with the forum
are described on the forum site itself.

Links to Related Web Sites
 www.uclinux.org – µClinux home page

 www.ucdot.org/faq.pl – very valuable documents describing details about µClinux

 http://www.linux-mtd.infradead.org/ – JFFS2 and mtdutils home page

 www.uclibc.org – uClibc home page

 www.codesourcery.com/archives/coldfire-gnu-discuss/maillist

 http://forums.freescale.com/freescale/board?board.id=CFCOMM – Freescale Coldfire forum

http://forums.lantronix.com/�
http://www.lantronix.com/support/downloads/�
http://www.uclinux.org/�
http://www.ucdot.org/faq.pl�
http://www.linux-mtd.infradead.org/�
http://www.uclibc.org/�
http://www.codesourcery.com/archives/coldfire-gnu-discuss/maillist.html�
http://forums.freescale.com/freescale/board?board.id=CFCOMM�

Linux Software Developers Kit (SDK) User Guide 73

AA.. IImmppoorrttaanntt CCoonnffiigguurraattiioonn SSwwiittcchheess
Table A-1. Important Configuration Switches

Switch Path in Configuration Utility Description

CONFIG_NFS_FS KERN->File systems->Network File
Systems->NFS file system support

Enables Network file system.

CONFIG_NFS_V3
KERN->File systems->Network File
Systems->NFS file system support-
>Provide NFSv3 client support

Enables NFS version 3.

CONFIG_NFS_COMMON automatically selected when
CONFIG_NFS_FS gets selected

CONFIG_IP_PNP_DHCP

KERN->Networking->Networking
options->TCP/IP networking->IP:
kernel level autoconfiguration->IP:
DHCP support

Enables kernel level IP
configuration using DHCP.

CONFIG_IP_PNP_BOOTP

KERN->Networking->TCP/IP
networking->IP: kernel level
autoconfiguration->IP: DHCP
support

Enables kernel level IP
configuration using BOOTP.

CONFIG_ROOT_NFS
KERN->File systems->Network File
Systems->Root file system support
on NFS

Enables NFS mount as RFS.

CONFIG_LTRX_CPDRV KERN->Processor type and
features->CP driver support

Enables CP driver (/dev/cp)

CONFIG_LTRX_CPM_DEFAULT_
DEVICE
CONFIG_LTRX_CPM_DEFAULT_
GPIO
CONFIG_LTRX_CPM_MANUALY
CONFIG_LTRX_CPM_MANUALY_
CP*

KERN->Processor type and
features->Lantronix CP Manager

Specify usage of CP.
DEVICE maps CP as pre-defined
use.
GPIO maps all CP as GPIO.
MANUALY maps each CP by user.

CONFIG_NOMMU_INITIAL_TRIM_
EXCESS

KERN->Processor type and
features->Turn on mmap() excess
space trimming before booting

Enables page triming in mmap.
Effective for memory fragmentation
avoidance with Shared profile.

CONFIG_RECLAIM_PAGE_BEFO
RE_LOADING

KERN->Processor type and
features->Reclaim page before
process loading

Enables that reclaim pages before
loading a process.
Effective for memory fragmentation
avoidance.

CONFIG_NOMMU_NUMERICAL_A
LLOC_PAGES

KERN->Processor type and
features->Turn on mmap that
allocates memory per page

Enables that mmap allocates pages
by numeric instead of order.

A Important Configuration Switches

Linux Software Developers Kit (SDK) User Guide 74

Switch Path in Configuration Utility Description

CONFIG_SERIAL_MCF_RS485

KERN->Device Drivers->Character
devices->Serial drivers->Enable
RS485 support in the new style
ColdFire serial driver

Enables RS-485 support.

CONFIG_USER_BUSYBOX_FEAT
URE_MOUNT_NFS

BUSY->Linux System Utlilites-
>mount->Support mounting NFS file
systems

Enables NFS support on mount
command.

CONFIG_USER_PORTMAP_PORT
MAP

USER->Network Applications-
>portmap

Enables NFS support on mount
command.

CONFIG_USER_GDBSERVER_GD
BSERVER

USER->Miscellaneous Applications-
>gdbserver

Build gdbserver.

CONFIG_USER_CONSOLE_DEFA
ULT

USER->Console Login
Configuration

Use console depends on
linux/vendor/Lantronix/<platform>/ro
mfs_extra/etc/inittab

CONFIG_USER_CONSOLE_NONE USER->Console Login
Configuration

Don’t use console

CONFIG_USER_CONSOLE_CON1 USER->Console Login
Configuration

Use CON1 (ttyS0) as console

CONFIG_USER_CONSOLE_CON2 USER->Console Login
Configuration

Use CON2 (ttyS1) as console

CONFIG_USER_CONSOLE_LOGI
N_AUTH

USER->Console Login
Configuration

Use login authentication for console

Abbreviations used in the table above

Table A-2. Configuration Switch Abbreviations

Abbreviations Description

BUSY USER->BusyBox->BusyBox (NEW)

KERN Kernel/Library/Defaults Selection -> Customize Kernel Settings

USER Kernel/Library/Defaults Selection ->
Customize Application/Library Settings

Linux Software Developers Kit (SDK) User Guide 75

BB.. DDiiffffeerreenncceess BBeettwweeeenn µµCClliinnuuxx aanndd SSttaannddaarrdd
LLiinnuuxx
The µClinux kernel is a collection of patches to make the standard Linux kernel run on CPUs that
do not have an MMU. As a consequence you will encounter some differences between the
µClinux and the standard Linux behavior. While porting existing Linux applications to
µClinux/ColdFire you should be aware of these limitations:

 no fork() – consider using vfork() instead but beware of the difference of their semantics

 no daemon() – it is usually implemented on top of fork and cannot be easily replaced without
changing the semantics.

 fixed stack size -- the stack of an application is set at execution time and cannot grow during
runtime. The default stack size is 4k! It can be increased with the "-s" option of m68k-uClinux-
elf2flat.

 limited libc compared to glibc -- either add more to libc, or remove some functionality.

 no support for ELF binary file format

 very limited support for shared libraries due to missing MMU -- all applications get linked
statically

 mmap() is very inefficient

 no paging -- applications have to be loaded completely into RAM, the heap is very
susceptible to fragmentation.

 processes do not run in their isolated virtual memory -- they can corrupt other processes and
even the kernel.

Linux Software Developers Kit (SDK) User Guide 76

CC.. TTrroouubblleesshhoooottiinngg
Technical Support

Technical Support US

Check our online knowledge base or send a question to Technical Support at
http://www.lantronix.com/support.

Phone: (800) 422-7044 (US Only)
 (949) 453-7198

Technical Support Europe, Middle East, and Africa

Phone: +33 (0)1 39 30 41 72
 +49 (0) 180 500 13 53 (Germany Only)

Email: eu_techsupp@lantronix.com or eu_support@lantronix.com

Firmware downloads, FAQs, and the most up-to-date documentation are available at
www.lantronix.com/support.

When you report a problem, please provide the following information:

 Your name, and your company name, address, and phone number

 Lantronix model number

 Lantronix MAC number

 Software version (on the first screen shown when you Telnet to port 9999)

 Description of the problem

 Status of the unit when the problem occurred (please try to include information on user and
network activity at the time of the problem).

http://www.lantronix.com/support�
mailto:eu_techsupp@lantronix.com�
mailto:eu_support@lantronix.com�
http://www.lantronix.com/support�

	Linux Software Developer's Kit (SDK) User Guide
	Copyright & Trademark
	Warranty
	Contacts
	Disclaimer
	Revision History
	Contents
	List of Figures
	List of Tables

	1. Overview
	2. Installing the SDK
	3. dBUG Boot loader
	4. Supported File Systems
	5. Flash Partitioning
	6. Building µClinux
	7. µClinux Startup Scripts
	8. µClinux Networking
	9. BusyBox
	10. Sample Applications
	11. VIP Access Software
	12. Profiling & Debugging
	13. Firmware Updates
	14. Resources
	A. Important Configuration Switches
	B. Differences between uClinux and Standard Linux
	C. Troubleshooting

